Comparison of coriolis and turbine type flow meters for fuel measurement in gas turbine testing

DOIResolve DOI:
AuthorSearch for: ; Search for:
Proceedings titleASME 1993 International Gas Turbine and Aeroengine Congress and Exposition, GT 1993
ConferenceASME 1993 International Gas Turbine and Aeroengine Congress and Exposition, GT 1993, 24 May 1993 through 27 May 1993
SubjectAircraft engines; Aircraft propulsion; Combustion; Engines; Flow measurement; Flowmeters; Fuels; Gases; Machinery; Marine engines; Mass transfer; Measurement errors; Risk assessment; Software testing; Uncertainty analysis; Experimental installations; Gas turbine performance; Information exchanges; Measurement uncertainty; National Research Council of Canada; Performance analysis; Steady state performance; Steady-state operating; Gas turbines
AbstractThe Machinery and Engine Technology (MET) Program of the National Research Council of Canada (NRCC) has established a program for the evaluation of sensors to measure gas turbine engine performance accurately. The precise measurement of fuel flow is an essential part of steady-state gas turbine performance assessment. Prompted by an international engine testing and information exchange program, and a mandate to improve all aspects of gas turbine performance evaluation, the MET Laboratory has critically examined two types of fuel flowmeters, Coriolis and turbine. The two flowmeter types are different in that the Coriolis flowmeter measures mass flow directly, while the turbine flowmeter measures volumetric flow, which must be converted to mass flow for conventional performance analysis. The direct measurement of mass flow, using a Coriolis flowmeter, has many advantages in field testing of gas turbines, because it reduces the risk of errors resulting from the conversion process. Turbine flowmeters, on the other hand, have been regarded as an industry standard because they are compact, rugged, reliable, and relatively inexpensive. This paper describes the project objectives, the experimental installation, and the results of the comparison of the Coriolis and turbine type flowmeters in steady-state performance testing. Discussed are variations between the two types of flowmeters due to fuel characteristics, fuel handling equipment, acoustic and vibration interference and installation effects. Also included in this paper are estimations of measurement uncertainties for both types of flowmeters. Results indicate that the agreement between Coriolis and turbine type flowmeters is good over the entire steady-state operating range of a typical gas turbine engine. In some cases the repeatability of the Coriolis flowmeter is better than the manufacturers specification. Even a significant variation in fuel density (10%), and viscosity (300%), did not appear to compromise the ability of the Coriolis flowmeter to match the performance of the turbine flowmeter. Copyright © 1993 by ASME.
Publication date
AffiliationNational Research Council Canada
Peer reviewedYes
NPARC number21275134
Export citationExport as RIS
Report a correctionReport a correction
Record identifier07220556-9c4d-4dbb-bcdc-5fd2ebb72e0d
Record created2015-05-11
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)