Compositional and morphological changes of ordered PtxFey/C oxygen electroreduction catalysts

Download
  1. Get@NRC: Compositional and morphological changes of ordered PtxFey/C oxygen electroreduction catalysts (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1002/cctc.201200614
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleChemCatChem
ISSN1867-3880
Volume5
Issue6
Pages14491460
SubjectIron; Platinum; Carbon; Supported catalysts; Reduction
AbstractChanges in the O₂ reduction activity (ORR) and structure of carbon-supported catalysts upon electrochemical stress testing are investigated. Focus is placed on two alloy catalysts of nominal Pt₃Fe/C and Pt₃Fe2/C compositions. Energy dispersive X-ray spectroscopy (EDXS) spot and line analyses reveal a dependence of the Fe composition on the particle size, particularly for the two as-prepared catalysts. The catalyst particles are shown to have a Pt-enriched shell and a PtxFey alloy core. Larger (>≈10 nm) particles are shown to have a higher Fe content that approaches the nominal composition, which suggests that the smaller (<≈6 nm) Pt catalyst particles are more difficult to alloy. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), XRD, and SEM with EDXS show that Fe is lost gradually from the catalyst particles as a result of extensive potential (E)-cycling. Changes upon E-cycling are observed most clearly for the small (<3 nm) particles, in which Fe is almost entirely depleted. However, the catalytic ORR activities remain constant over an extensive cycling period for the PtxFey/C catalysts and the mass ORR activities decrease proportionally with Pt surface area (Apt). The histograms before and after cycling are compared to observed changes in Apt and are discussed in comparison to E-holding experiments. It is concluded that the dissolution of Pt is a strong contributor for the observed decrease in Apt and mass ORR activity for the PtxFey/C catalysts. The continuous transition between Pt oxide formation and its reduction to Pt metal is suggested to play a major role in the degradation of the PtxFey/C catalysts studied in this work.
Publication date
PublisherWiley
LanguageEnglish
AffiliationNRC Institute for Chemical Process and Environmental Technology; Energy, Mining and Environment; National Research Council Canada
Peer reviewedYes
NPARC number23000492
Export citationExport as RIS
Report a correctionReport a correction
Record identifier0d178a01-981f-452f-b758-65d696a8887b
Record created2016-07-26
Record modified2016-07-26
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)
Date modified: