New Theory to Explain Frost Action

  1. (PDF, 706 KB)
  2. Get@NRC: New Theory to Explain Frost Action (Opens in a new window)
DOIResolve DOI:
AuthorSearch for: ; Search for:
TypeTechnical Report
Series titleTechnical Translation, National Research Council Canada; Volume 920
Physical description10 p.
SubjectPermafrost; Soils; theory; ice; frozen soils; freezing; frost heaving
AbstractSome aspects of the general theory of frost heaving are not consistent with the way water moves in saturated material, hence a new theory is presented based on the absorption forces of water on surfaces. Water molecules, being dipolar, arrange themselves on the surface of crystals to balance the electrical forces. The crystal surfaces become covered with several layers of water with the attraction force of each successive layer decreasing with distance from the surface. Because the arrangement of water molecules is different in ice the crystals are not attached to the mineral crystal surfaces with the same tenacity as individual water molecules. As more ice freezes, removing the outer layers of water from the sphere of influence of the mineral particles, water moves in from the surrounding area to replenish the water removed by freezing. Thr author has presented calculations to show that pressures in the water films can exceed 40,000 kp/cm[2] and thus explains the large heaving forces observed when ice lensing occurs. On the basis of this new theory one can assume that frost action can be changed using electrical fields. It has been found that an electrical current of 0.04 to 0.19 amperes caused considerable changes in the water films that develop on soil particles. However it may be too optimistic to assume that the electrical potential difference between metal surfaces of different temperatures would be sufficient to stop frost action.
Publication date
AffiliationNRC Institute for Research in Construction; National Research Council Canada
Peer reviewedNo
NRC number446
NPARC number20359154
Export citationExport as RIS
Report a correctionReport a correction
Record identifier0e7332a2-0ace-4a39-8469-fb81428590ef
Record created2012-07-20
Record modified2016-10-03
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)