Twin tubular pinch effect in curving confined flows

Download
  1. Get@NRC: Twin tubular pinch effect in curving confined flows (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1038/srep09765
AuthorSearch for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleScientific Reports
ISSN2045-2322
Volume5
Article number9765
AbstractColloidal suspensions of buoyancy neutral particles flowing in circular pipes focus into narrow distributions near the wall due to lateral migration effects associated with fluid inertia. In curving flows, these distributions are altered by Dean currents and the interplay between Reynolds and Dean numbers is used to predict equilibrium positions. Here, we propose a new description of inertial lateral migration in curving flows that expands current understanding of both focusing dynamics and equilibrium distributions. We find that at low Reynolds numbers, the ratio δ between lateral inertial migration and Dean forces scales simply with the particle radius, coil curvature and pipe radius as R3R/a4. A critical value δc = 0.148 of this parameter is identified along with two related inertial focusing mechanisms. In the regime below δc, coined subcritical, Dean forces generate permanently circulating, twinned annuli, each with intricate equilibrium particle distributions including eyes and trailing arms. At δ > δc (supercritical regime) inertial lateral migration forces are dominant and particles focus to a single stable equilibrium position.
Publication date
PublisherNature Publishing Group
LanguageEnglish
AffiliationNational Research Council Canada; Medical Devices
Peer reviewedYes
NPARC number21277357
Export citationExport as RIS
Report a correctionReport a correction
Record identifier0ec397df-a4a4-4be9-bbd3-1b6d947ac6f4
Record created2016-03-09
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)