Single-exciton energy shell structure in InAs/GaAs quantum dots

Download
  1. (PDF, 769 KB)
  2. Get@NRC: Single-exciton energy shell structure in InAs/GaAs quantum dots (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1103/PhysRevB.78.235313
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titlePhysical Review B - Condensed Matter and Materials Physics
ISSN1098-0121
Volume78
Issue23
Article number235313
AbstractThe energy shell structure of a single exciton confined in a self-assembled quantum dot (QD), including excited states, is studied in a regime where the direct Coulomb attraction energy is comparable to the kinetic energy of the carriers. This is achieved via magnetophotoluminescence excitation spectroscopy experiments, where a magnetic field applied perpendicular to the plane of the QD is used to reveal the angular-momentum content of energy shells. The absorption spectrum of the QDs is modeled, and comparison with experiment allows us to relate the observed transitions to interband QD bound-state transitions. The blueshift of the absorption peaks compared to the emission peaks is then interpreted in terms of many-body interactions, and we show that for a highly symmetric situation, the observed energy difference gives a direct measurement of the extra exchange energy gained upon addition of an extra exciton in the QD. © 2008 The American Physical Society.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada (NRC-CNRC); NRC Institute for Microstructural Sciences
Peer reviewedYes
NPARC number21274614
Export citationExport as RIS
Report a correctionReport a correction
Record identifier118d2cfd-7857-4278-b9f1-e904804bad07
Record created2015-03-18
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)