Biosynthesis of 2-acetamido-2,6-dideoxy-L-hexoses in bacteria follows a pattern distinct from those of the pathways of 6-deoxy-L-hexoses

Download
  1. Get@NRC: Biosynthesis of 2-acetamido-2,6-dideoxy-L-hexoses in bacteria follows a pattern distinct from those of the pathways of 6-deoxy-L-hexoses (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1042/BJ20030099
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleBiochemical Journal
Volume371
IssuePt. 3
Pages989995; # of pages: 7
Subjectdeoxy-hexose; lipopolysaccharide; UDP-GlcNAc; UDP-L-RhaNAc; Vibrio cholerae
Abstract6-Deoxy-L-hexoses have been shown to be synthesized from dTDP-D-glucose or GDP-D-mannose so that the gluco/galacto-configuration is converted into the manno/talo-configuration, and manno/talo is switched to gluco/galacto. Our laboratory has been investigating the biosynthesis of 2-acetamido-2,6-dideoxy-L-hexoses in both Gram-positive and Gram-negative bacteria, and in a recent paper we described the biosynthesis of the talo (pneumosamine) and galacto (fucosamine) derivatives from UDP-D-N-acetylglucosamine a 2-acetamido sugar [Kneidinger, O'Riordan, Li, Brisson, Lee and Lam (2003) J. Biol. Chem. 278, 3615-3627]. In the present study, we undertake the task to test the hypothesis that UDP-D-N-acetylglucosamine is the common precursor for the production of 2-acetamido-2,6-dideoxy-L-hexoses in the gluco-, galacto-, manno- and talo-configurations. We present data to reveal the steps for the biosynthesis of the gluco (quinovosamine)- and manno (rhamnosamine)-configured compounds. The corresponding enzymes WbvB, WbvR and WbvD from Vibrio cholerae serotype O37 have been overexpressed and purified to near homogeneity. The enzymic reactions have been analysed by capillary electrophoresis and NMR spectroscopy. Our data have revealed a general feature of reaction cascades due to the three enzymes. First, UDP-D-N-acetylglucosamine is catalysed by the multi-functional enzyme WbvB, whereby dehydration occurs at C-4, C-6 and epimerization at C-5, C-3 to produce UDP-2-acetamido-2,6-dideoxy-L-lyxo-4-hexulose. Secondly, this intermediate is converted by the C-4 reductase, WbvR, in a stereospecific reaction to yield UDP-2-acetamido-L-rhamnose. Thirdly, UDP-2-acetamido-L-rhamnose is epimerized at C-2 to UDP-2-acetamido-L-quinovose by WbvD. Interestingly, WbvD is also an orthologue of WbjD, but not vice versa. Incubation of purified WbvD with UDP-2-acetamido-2,6-dideoxy-L-talose and analysing the reaction products by capillary electrophoresis revealed the same product peak as when WbjD was used. This sugar nucleotide is a specific substrate for WbjD and is a C-4 epimer of UDP-2-acetamido-L-rhamnose.
Publication date
LanguageEnglish
AffiliationNRC Institute for Biological Sciences; National Research Council Canada
Peer reviewedNo
NRC numberKNEIDINGER2003
NPARC number9388738
Export citationExport as RIS
Report a correctionReport a correction
Record identifier12155cd2-6138-4b17-90fa-e20a68e7d88f
Record created2009-07-10
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)