Influence of hydrated silica surfaces on interfacial water in the presence of clathrate hydrate forming gases

Download
  1. Get@NRC: Influence of hydrated silica surfaces on interfacial water in the presence of clathrate hydrate forming gases (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1021/jp305529d
AuthorSearch for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleThe Journal of Physical Chemistry C
ISSN1932-7447
1932-7455
Volume116
Issue47
Pages2490724915
AbstractWe study the hydrated silica–water interface in the presence of methane or carbon dioxide gas with molecular dynamics simulations. The simulations are performed with a limited amount of water, which forms a meniscus between two hydroxylated silica surfaces separated by 40 to 60 Å. Simulations were performed with the remaining space of the simulation cell left empty or filled with different numbers of methane or carbon dioxide gas molecules. The meniscus is used to determine the contact angle between water and silica in the absence and presence of the gases. The distribution profiles of the water and gas phases are determined over the duration of the simulation. The water number density in the layers adjacent to the silica is higher, and these layers are more structured and less mobile compared with water layers far from the surface. Additionally, the concentrations of the gases are significantly higher at the liquid and silica interfaces than in other locations in the gas phase. We speculate that the enhanced concentration of gases at the interface along with the extended contact area (curved meniscus compared with flat interface in the absence of silica surfaces) between water and guest molecules at the meniscus as well as lesser mobility of water molecules near the silica surface may provide a mechanism for the heterogeneous nucleation of the clathrate hydrate in water-wetting porous medium.
Publication date
LanguageEnglish
AffiliationSecurity and Disruptive Technologies; National Research Council Canada
Peer reviewedYes
NPARC number21268893
Export citationExport as RIS
Report a correctionReport a correction
Record identifier12b63578-7c99-4fe2-89cd-03a78ffde4ad
Record created2013-11-22
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)