Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy

Download
  1. Get@NRC: Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1038/43410
AuthorSearch for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleNature
ISSN0028-0836
Volume401
Issue6748
Pages5254; # of pages: 3
AbstractDynamic processes at the molecular level occur on ultrafast time scales and are often associated with structural as well as electronic changes. These can in principle be studied by time-resolved scattering1, 2, 3 and spectroscopic methods, respectively. In polyatomic molecules, however, excitation results in the rapid mixing of vibrational and electronic motions, which induces both charge redistribution and energy flow in the molecule4, 5. This 'vibronic' or 'non-adiabatic' coupling is a key step in photochemical6 and photobiological processes7 and underlies many of the concepts of molecular electronics8, but it obscures the notion of distinct and readily observable vibrational and electronic states. Here we report time-resolved photoelectron spectroscopy measurements that distinguish vibrational dynamics from the coupled electronic population dynamics, associated with the photo-induced internal conversion, in a linear unsaturated hydrocarbon chain. The vibrational resolution of our photoelectron spectra allows for a direct observation of the underlying nuclear dynamics, demonstrating that it is possible to obtain detailed insights into ultrafast non-adiabatic processes.
Publication date
PublisherNature Publishing Group
LanguageEnglish
AffiliationNational Research Council Canada; NRC Steacie Institute for Molecular Sciences
Peer reviewedYes
Identifier10084666
NPARC number12328896
Export citationExport as RIS
Report a correctionReport a correction
Record identifier17261d60-bbfa-48f2-a1bf-c6dbcaa6a971
Record created2009-09-10
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)