The massive survey. II. stellar population trends out to large radius in massive early-type galaxies

Download
  1. (PDF, 2 MB)
  2. Get@NRC: The massive survey. II. stellar population trends out to large radius in massive early-type galaxies (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1088/0004-637X/807/1/11
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleThe Astrophysical Journal
ISSN1538-4357
Volume807
Issue1
Pages# of pages: 19
Subjectgalaxies: elliptical and lenticular; cD-galaxies: evolution; galaxies: kinematics and dynamics; galaxies: stellar content
AbstractWe examine stellar population gradients in ~100 massive early-type galaxies spanning 180 < σ < 370 km s−₁ and MK of −22.5 to −26.5 mag, observed as part of the MASSIVE survey. Using integral-field spectroscopy from the Mitchell Spectrograph on the 2.7 m telescope at McDonald Observatory, we create stacked spectra as a function of radius for galaxies binned by their stellar velocity dispersion, stellar mass, and group richness. With excellent sampling at the highest stellar mass, we examine radial trends in stellar population properties extending to beyond twice the effective radius (∼2.5 Re). Specifically, we examine trends in age, metallicity, and abundance ratios of Mg, C, N, and Ca, and discuss the implications for star formation histories and elemental yields. At a fixed physical radius of 3–6 kpc (the likely size of the galaxy cores formed at high redshift), stellar age and [α/Fe] increase with increasing σ* and depend only weakly on stellar mass, as we might expect if denser galaxies form their central cores earlier and faster. If we instead focus on 1-1.5Re, the trends in abundance and abundance ratio are washed out, as might be expected if the stars at large radius were accreted by smaller galaxies. Finally, we show that when controlling for σ*, there are only very subtle differences in stellar population properties or gradients as a function of group richness; even at large radius, internal properties matter more than environment in determining star formation history
Publication date
PublisherAmerican Astronomical Society
LanguageEnglish
AffiliationNRC Herzberg Astronomy and Astrophysics; National Research Council Canada
Peer reviewedYes
NPARC number23001689
Export citationExport as RIS
Report a correctionReport a correction
Record identifier1ce254a0-05bc-48a0-bf42-b1721a3b778d
Record created2017-03-17
Record modified2017-03-30
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)