Limitation of distortion in friction stir welded (FSW) panels using needle peening

  1. Get@NRC: Limitation of distortion in friction stir welded (FSW) panels using needle peening (Opens in a new window)
DOIResolve DOI:
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for:
Journal titleMaterials Science Forum
Pages12031208; # of pages: 6
SubjectDistortion; Friction Stir Welding (FSW); Needle Peening; Residual Stress
AbstractFriction stir welding (FSWing) induces residual stresses and distortions in welded structures. Such residual stresses reduce the fatigue life of welded components, while the induced distortions prevent the welding of large or thin components. In the present study, needle peening was used to induce additional residual stresses in 2.3-mm thick (FSWed) aluminum alloy (AA) 2024-T3 sheets. This was done with the objective to counterbalance the welding-induced stresses and thus reduce the overall stresses and distortions. The needle peening process, which stems from shot peening, consists of hammering a surface using cylindrical spherical ended shots sliding back and forth in a treatment head. An instrumented needle peening machine was used to carry out peening on as-received (or bare) and bead-on-plate FSWed AA2024-T3 material. In both cases, the width of the peening area corresponded to that of a typical weld. The influence of the peening process parameters such as needle size, applied power and travel speed on the surface quality and magnitude of the induced distortions were evaluated. The results indicate that, by increasing the needle diameter from 1.2 mm to 2.0 mm, the peening-induced deflection on bare sheet material increased by an average value of 27% while the roughness average, Ra, decreased by an average value of 47%. It was also found that a surface finish qualitatively similar to that of conventional shot peening could be obtained by using appropriate needle peening trajectories. Finally, needle peening with an applied power of 10% was sufficient for eliminating 37% of the welding-induced transverse curvature and 82% of the welding-induced longitudinal curvature.
Publication date
AffiliationNRC Institute for Aerospace Research; National Research Council Canada
Peer reviewedYes
NPARC number21276057
Export citationExport as RIS
Report a correctionReport a correction
Record identifier2381f9d1-6503-4c80-80fb-cff706c2f856
Record created2015-09-18
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)