Development of a cell permeable competitive antagonist of RhoA and CRMP4 binding, TAT-C4RIP, to promote neurite outgrowth

Download
  1. Get@NRC: Development of a cell permeable competitive antagonist of RhoA and CRMP4 binding, TAT-C4RIP, to promote neurite outgrowth (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1007/s12031-014-0350-3
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleJournal of Molecular Neuroscience
ISSN0895-8696
AbstractNeurons fail to re-extend their processes within the central nervous system environment in vivo, and this is partly because of inhibitory proteins expressed within myelin debris and reactive astrocytes that actively signal to the injured nerve cells to limit their growth. The ability of the trans-acting activator of transcription (TAT) protein transduction domain (PTD) to transport macromolecules across biological membranes raises the possibility of developing it as a therapeutic delivery tool for nerve regeneration. Most studies have produced TAT PTD fusion protein in bacteria, which can result in problems such as protein solubility, the formation of inclusion bodies and the lack of eukaryotic posttranslational modifications. While some groups have investigated the production of TAT PTD fusion protein in mammalian cells, these strategies are focused on generating TAT PTD fusions that are targeted to the secretory pathway, where furin protease as well as other proteases can cleave the TAT PTD. As an alternative to mutating the furin cleavage site in the TAT PTD, we describe a novel method to generate cytosolic TAT PTD fusion proteins and purify them from cell lysates. Here, we use this method to generate TAT-C4RIP, a cell permeable competitive antagonist of binding between the small GTPase RhoA and the cytosolic phosphoprotein Collapsin response mediator protein 4 (CRMP4). We demonstrate that TAT-C4RIP transduces cells in vitro and in vivo and retains its biological activity to attenuate myelin inhibition in an in vitro neurite outgrowth assay. © 2014 Springer Science+Business Media New York.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada (NRC-CNRC); Human Health Therapeutics (HHT-TSH)
Peer reviewedYes
NPARC number21272220
Export citationExport as RIS
Report a correctionReport a correction
Record identifier2981162e-5b98-4286-8907-addaa9b9f5bf
Record created2014-07-23
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)