Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics

  1. Get@NRC: Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics (Opens in a new window)
DOIResolve DOI:
AuthorSearch for: ; Search for: ; Search for: ; Search for:
Journal titleLab on a Chip - Miniaturisation for Chemistry and Biology
Pages26512659; # of pages: 9
Subject[2 (methacryloyloxy)ethyl] trimethylammonium chloride; fluorescein isothiocyanate; polymer; unclassified drug; article; electroosmosis; electrospray mass spectrometry; elution; fluorescence; microfluidics; polymerization; priority journal; proteomics; solid phase extraction
AbstractBoth 6 and 8-channel integrated microfluidic sample pretreatment devices capable of performing "in space" sample fractionation, collection, preconcentration and elution of captured analytes via sheath flow assisted electrokinetic pumping are described. Coatings and monolithic polymer beds were developed for the glass devices to provide cationic surface charge and anodal electroosmotic flow for delivery to an electrospray emitter tip. A mixed cationic ([2-(methacryloyloxy)ethyl] trimethylammonium chloride) (META) and hydrophobic butyl methacrylate-based monolithic porous polymer, photopolymerized in the 6- or 8-fractionation channels, was used to capture and preconcentrate samples. A 0.45 wt% META loaded bed generated comparable anodic electroosmotic flow to the cationic polymer PolyE-323 coated channel segments in the device. The balanced electroosmotic flow allowed stable electrokinetic sheath flow to prevent cross contamination of separated protein fractions, while reducing protein/peptide adsorption on the channel walls. Sequential elution of analytes trapped in the SPE beds revealed that the monolithic columns could be efficiently used to provide sheath flow during elution of analytes, as demonstrated for neutral carboxy SNARF (residual signal, 0.08% RSD, n = 40) and charged fluorescein (residual signal, 2.5% n = 40). Elution from monolithic columns showed reproducible performance with peak area reproducibility of ∼8% (n = 6 columns) in a single sequential elution and the run-to-run reproducibility was 2.4-6.7% RSD (n = 4) for elution from the same bed. The demonstrated ability of this device design and operation to elute from multiple fractionation beds into a single exit channel for sample analysis by fluorescence or electrospray mass spectrometry is a crucial component of an integrated fractionation and assay system for proteomics. © 2013 The Royal Society of Chemistry.
Publication date
AffiliationNational Research Council Canada (NRC-CNRC); National Institute for Nanotechnology (NINT-INNT)
Peer reviewedYes
NPARC number21269952
Export citationExport as RIS
Report a correctionReport a correction
Record identifier2e5ff108-10d6-4b3a-bc85-ed566f0d8519
Record created2013-12-13
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)