Assessment of Cytotoxicity by Emerging Impedance Spectroscopy

Download
  1. Get@NRC: Assessment of Cytotoxicity by Emerging Impedance Spectroscopy (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1016/j.taap.2004.10.025
AuthorSearch for: ; Search for:
TypeArticle
Journal titleToxicology and Applied Pharmacology
Volume206
Issue2
Pages102112; # of pages: 11
Subjectenv; Cells; Sodium; Mitosis
AbstractAn on-line and continuous technique based on electric cell substrate impedance sensing (ECIS) was developed for measuring the concentration and time response function of fibroblastic V79 cells exposed to toxicants. Mercury chloride (HgCl2), cadmium chloride (CdCl2), benzalkonium chloride (BAK), sodium arsenate (Na2HAsO4), and trinitrobenzene (TNB) were used as five test models. The first four chemicals serve as a model for acute toxicants, and TNB represents a model for long-term cytotoxicity effects. Adhesion, spreading, and proliferation of V79 fibroblastic cells cultured on a microarray of small gold electrodes precoated with fibronectin were detected as resistance changes. The response function was derived to reflect the resistance change as a result of cell attachment, spreading, mitosis and cytotoxicity effect. Exposure of V79 cells to toxicants led to alterations in cell behavior, and therefore, chemical cytotoxicity was easily screened by measuring the response function of the attached and spread cells in the presence of inhibitor. The half inhibition concentration, the required concentration to achieve 50% inhibition, was obtained from the response function to provide dynamic information about cytotoxicity during the course of the assay. A simple mathematical model was developed to describe the responses of ECIS that were related to the adhesion, spreading, and proliferation of V79 fibroblastic cells. The novel results of this paper are mainly characterized by the systematic study of several parameters including the cell number, detection limit, sensor sensitivity, and cytotoxicity, and they may motivate further research and study of ECIS sensors.
Publication date
LanguageEnglish
AffiliationNRC Biotechnology Research Institute; National Research Council Canada
Peer reviewedNo
NRC number47227
NPARC number3538654
Export citationExport as RIS
Report a correctionReport a correction
Record identifier3c2f2196-473b-4d72-8153-befafb954b0f
Record created2009-03-01
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)