Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases

Download
  1. Get@NRC: Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1016/j.jsb.2013.09.012
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleJournal of Structural Biology
ISSN1047-8477
Volume184
Issue2
Pages147154; # of pages: 8
SubjectMonooxygenase; Phenylacetate degradation pathway; Aromatic compounds degradation; Quaternary structure
AbstractThe phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme represents a new family of monooxygenases. We have previously determined the structure of the PaaAC subcomplex of catalytic (A) and structural (C) subunits and shown that PaaACB form a stable complex. The PaaB subunit is unrelated to the small subunits of homologous monooxygenases and its role and organization of the PaaACB complex is unknown. From low-resolution crystal structure, electron microscopy and small angle X-ray scattering we show that the PaaACB complex forms heterohexamers, with a homodimer of PaaB bridging two PaaAC heterodimers. Modeling the interactions of reductase subunit PaaE with PaaACB suggested that a unique and conserved 'lysine bridge' constellation near the Fe-binding site in the PaaA subunit (Lys68, Glu49, Glu72 and Asp126) may form part of the electron transfer path from PaaE to the iron center. The crystal structure of the PaaA(K68Q/E49Q)-PaaC is very similar to the wild-type enzyme structure, but when combined with the PaaE subunit the mutant showed 20-50 times reduced activity, supporting the functional importance of the 'lysine bridge'. © 2013 Elsevier Inc.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada (NRC-CNRC); Human Health Therapeutics
Peer reviewedYes
NPARC number21271816
Export citationExport as RIS
Report a correctionReport a correction
Record identifier3fa88cd5-91b7-48b8-ad94-7e7ead7754a6
Record created2014-04-22
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)