On the depolarization asymmetry seen in giant radio lobes

  1. Get@NRC: On the depolarization asymmetry seen in giant radio lobes (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1007/s10509-012-1310-4
AuthorSearch for: ; Search for:
Journal titleAstrophysics and Space Science
Pages205210; # of pages: 6
AbstractThe depolarization asymmetry seen in double-lobed radio sources, referred to as the Laing-Garrington (L-G) effect where more rapid depolarization is seen in the lobe with no visible jet as the wavelength increases, can be explained either by internal differences between the two lobes, or by an external Faraday screen that lies in front of only the depolarized lobe. If the jet one-sidedness is due to relativistic beaming the depolarization asymmetry must be due to an intervening Faraday screen. If it is intrinsic the depolarization asymmetry must be related to internal differences in the lobes. For a random viewing angle distribution, which must be the case here where un-beamed lobe radiation dominates, jet one-sidedness is unrelated to viewing angle and therefore cannot be used either to estimate the viewing angle or to imply beaming. The outflow speed in the kpc jet is notoriously difficult to determine. However, although it has not yet been proven conclusively, we assume in this paper that the speed in the outer jet of several Fanaroff-Riley Class 1 (FRI) sources exhibiting the L-G effect is close to the 0. 1c reported by several other investigators. For these sources we find that the jet one-sidedness cannot be explained by beaming and therefore must be intrinsic. In these FRI sources the L-G effect must be due to differences that originate inside the lobes themselves, with the outer regions of the relevant lobe acting as a Faraday screen. Although it is not known if the flow in the outer jets of FRII sources also slows to this speed it is suggested that the explanation of the L-G effect is likely to be the same in both types. This argument is strengthened by the recent evidence that FRII galaxies have very large viewing angles, which in turn implies that the L-G model cannot work regardless of the jet velocity. It may therefore be too soon to completely rule out internal depolarization in the lobes as the true explanation for the L-G effect. © 2012 Springer Science+Business Media Dordrecht.
Publication date
AffiliationNational Research Council Canada (NRC-CNRC)
Peer reviewedYes
NPARC number21270611
Export citationExport as RIS
Report a correctionReport a correction
Record identifier41cbf4c2-4896-430a-93f6-067983923249
Record created2014-02-17
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)
Date modified: