Molecular surface generation using a variable-radius solvent probe

DOIResolve DOI: http://doi.org/10.1002/prot.20682
AuthorSearch for: ; Search for:
TypeArticle
Volume62
Issue1
Pages244261; # of pages: 18
SubjectArtifacts; Biotechnology; HPC; pha; Protein; Proteins; Water
AbstractProtein-ligand binding occurs through interactions at the molecular surface. Hence, a proper description of this surface is essential to our understanding of the process of molecular recognition. Recent studies have noted the inadequacy of using a fixed 1.4 � solvent probe radius to generate the molecular surface. This assumes that water molecules approach all surface atoms at an equal distance irrespective of polarity, which is not the case. To adequately model the protein-water boundary requires that the solvent probe radius change according to the polarity of its contacting atoms, smaller near polar atoms and larger near apolar atoms. To our knowledge, no method currently exists to generate the molecular surface of a protein in this manner. Using a modification of the marching tetrahedra algorithm, we present a method to generate molecular surfaces using a variable radius solvent probe. The resulting surface lacks many of the unrealistic small crevices in nonpolar regions that are found when utilizing an invariant 1.4 � solvent probe, while maintaining the fine detail of the surface at polar regions. On application of the method on a test set of 20 protein structures taken from the Protein Data Bank (PDB), we also find far fewer empty unsolvated cavities that are present when using only a 1.4 � solvent probe, while the majority of solvated and polar cavities is retained. This suggests that the majority of empty cavities previously observed in protein structures might simply be artifacts of the surfacing method. We also find that the variable probe surface can have significant effects on electrostatic calculations by generating a better tuned description of the protein-water boundary. We also examined the binding interfaces of a diverse set of 55 protein-protein complexes. We find that using a variable probe results in an increase in perceived shape complementarity at these sites compared to using a 1.4 � solvent probe. The molecular volume and surface area are geometric values that determine various important properties for macromolecules, and the altered description afforded by a variable solvent probe molecular surface can have significant implications in protein recognition, energetics, folding, and stability calculations. Proteins 2006. � 2005 Wiley-Liss, Inc
Publication date
AffiliationNRC Biotechnology Research Institute; National Research Council Canada
NoteCopyright � 2005 Wiley-Liss, Inc
Peer reviewedNo
NRC number47501
NPARC number3539037
Export citationExport as RIS
Report a correctionReport a correction
Record identifier42b4c69a-a30b-4251-9809-7978bd999c2d
Record created2009-03-01
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)