ExaCT: automatic extraction of clinical trial characteristics from journal publications

  1. (PDF, 3 MB)
  2. Get@NRC: ExaCT: automatic extraction of clinical trial characteristics from journal publications (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1186/1472-6947-10-56
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for:
Journal titleBMC Medical Informatics and Decision Making 2010
AbstractBackground Clinical trials are one of the most important sources of evidence for guiding evidence-based practice and the design of new trials. However, most of this information is available only in free text - e.g., in journal publications - which is labour intensive to process for systematic reviews, meta-analyses, and other evidence synthesis studies. This paper presents an automatic information extraction system, called ExaCT, that assists users with locating and extracting key trial characteristics (e.g., eligibility criteria, sample size, drug dosage, primary outcomes) from full-text journal articles reporting on randomized controlled trials (RCTs). Methods ExaCT consists of two parts: an information extraction (IE) engine that searches the article for text fragments that best describe the trial characteristics, and a web browser-based user interface that allows human reviewers to assess and modify the suggested selections. The IE engine uses a statistical text classifier to locate those sentences that have the highest probability of describing a trial characteristic. Then, the IE engine's second stage applies simple rules to these sentences to extract text fragments containing the target answer. The same approach is used for all 21 trial characteristics selected for this study. Results We evaluated ExaCT using 50 previously unseen articles describing RCTs. The text classifier (first stage) was able to recover 88% of relevant sentences among its top five candidates (top5 recall) with the topmost candidate being relevant in 80% of cases (top1 precision). Precision and recall of the extraction rule (second stage) were 93% and 91%, respectively. Together, the two stages of the extraction engine were able to provide (partially) correct solutions in 992 out of 1050 test tasks (94%), with a majority of these (696) representing fully correct and complete answers. Conclusions Our experiments confirmed the applicability and efficacy of ExaCT. Furthermore, they demonstrated that combining a statistical method with 'weak' extraction rules can identify a variety of study characteristics. The system is flexible and can be extended to handle other characteristics and document types (e.g., study protocols).
Publication date
AffiliationNational Research Council Canada (NRC-CNRC); NRC Institute for Information Technology
Peer reviewedYes
NPARC number16285567
Export citationExport as RIS
Report a correctionReport a correction
Record identifier44149715-dfc1-4f4f-90ff-ef601c500765
Record created2010-11-03
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)