Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS

Download
  1. Get@NRC: Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1016/j.apsusc.2013.03.014
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleApplied Surface Science
ISSN0169-4332
Volume274
Pages195202; # of pages: 8
SubjectChloride; Concrete pore solutions; Film structure; Passive films; Pore solution; Simulated concrete pore solution; Transition layers; Valence state; Carbon steel; Chlorine compounds; Concretes; Corrosion; Electron energy loss spectroscopy; Oxide films
AbstractThe atomic structure of oxide films formed on carbon steel that are exposed to highly alkaline simulated concrete pore solutions was investigated using Electron Energy Loss Spectroscopy (EELS). In particular, the effect of chloride exposure on film structure was studied in two types of simulated pore solutions: saturated calcium hydroxide (CH) and a solution prepared to represent typical concrete pore solutions (CP). It was shown that the films that form on carbon steel in simulated concrete pore solutions contained three indistinct layers. The inner oxide film had a structure similar to that of FeIIO, which is known to be unstable in the presence of chlorides. The outer oxide film mainly resembled Fe3O4 (FeIIO·Fe 2 IIIO3) in the CH solution and α-Fe 2 IIIO3/Fe3O4 in the CP solution. The composition of the transition layer between the inner and outer layers of the oxide film was mainly composed of Fe3O4 (FeIIO·Fe2 IIIO3). In the presence of chloride, the relative amount of the FeIII/Fe II increased, confirming that chlorides induce valence state transformation of oxides from FeII to FeIII, and the difference between the atomic structures of oxide film layers diminished.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada (NRC-CNRC); Information and Communication Technologies
Peer reviewedYes
NPARC number21270747
Export citationExport as RIS
Report a correctionReport a correction
Record identifier45107555-9dc7-42ee-a7da-2d531c1ae4f7
Record created2014-02-17
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)