Tropospheric Emission Spectrometer (TES) satellite observations of ammonia, methanol, formic acid, and carbon monoxide over the Canadian oil sands: Validation and model evaluation

Download
  1. Get@NRC: Tropospheric Emission Spectrometer (TES) satellite observations of ammonia, methanol, formic acid, and carbon monoxide over the Canadian oil sands: Validation and model evaluation (Opens in a new window)
DOIResolve DOI: http://doi.org/10.5194/amt-8-5189-2015
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleAtmospheric Measurement Techniques
ISSN1867-1381
Volume8
Issue12
Pages51895211; # of pages: 23
AbstractThe wealth of air quality information provided by satellite infrared observations of ammonia (NH3), carbon monoxide (CO), formic acid (HCOOH), and methanol (CH3OH) is currently being explored and used for a number of applications, especially at regional or global scales. These applications include air quality monitoring, trend analysis, emissions, and model evaluation. This study provides one of the first direct validations of Tropospheric Emission Spectrometer (TES) satellite-retrieved profiles of NH3, CH3OH, and HCOOH through comparisons with coincident aircraft profiles. The comparisons are performed over the Canadian oil sands region during the intensive field campaign (August-September, 2013) in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring (JOSM). The satellite/aircraft comparisons over this region during this period produced errors of (i) +0.08 ± 0.25 ppbv for NH3, (ii) +7.5 ± 23 ppbv for CO, (iii) +0.19 ± 0.46 ppbv for HCOOH, and (iv) -1.1 ± 0.39 ppbv for CH3OH. These values mostly agree with previously estimated retrieval errors; however, the relatively large negative bias in CH3OH and the significantly greater positive bias for larger HCOOH and CO values observed during this study warrant further investigation. Satellite and aircraft ammonia observations during the field campaign are also used in an initial effort to perform preliminary evaluations of Environment Canada's Global Environmental Multi-scale - Modelling Air quality and CHemistry (GEM-MACH) air quality modelling system at high resolution (2.5 × 2.5 km2). These initial results indicate a model underprediction of ∼ 0.6 ppbv (∼ 60 %) for NH3, during the field campaign period. The TES/model CO comparison differences are ∼ +20 ppbv (∼ +20 %), but given that under these conditions the TES/aircraft comparisons also show a small positive TES CO bias indicates that the overall model underprediction of CO is closer to ∼ 10 % at 681 hPa (∼ 3 km) during this period.
Publication date
PublisherEuropean Geosciences Union
LanguageEnglish
AffiliationNational Research Council Canada; Aerospace
Peer reviewedYes
NPARC number21277373
Export citationExport as RIS
Report a correctionReport a correction
Record identifier4bd5df5e-7d38-4877-87fd-92793bc76907
Record created2016-03-09
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)