Induced currents in the quantum Hall regime: Energy storage, persistence, and I-V characteristics

Download
  1. Get@NRC: Induced currents in the quantum Hall regime: Energy storage, persistence, and I-V characteristics (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1103/PhysRevB.86.195314
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titlePhysical Review B - Condensed Matter and Materials Physics
ISSN1098-0121
Volume86
Issue19
Article number195314
AbstractInduced currents associated with the quantum Hall effect are studied in the temperature range 39mK to 1.6K, and at Landau-level filling factors ν=1,2,3,4, and 6, using torsion-balance magnetometry. A quantitative link is demonstrated between (nonlinear induced current) vs (inducing electromotive force) curves, and the subexponential decay of the induced current in a static magnetic field. The energy storage in the induced currents is reexamined with the conclusion that the predominant mechanism for storage is inductive, through the mutual inductance between the sample and the magnet, not capacitive as previous reports have assumed. The temperature dependencies of the currents are consistent with previous models, except for a low-temperature saturation at filling factors ν=1 and ν=2, which we attribute to electron heating. © 2012 American Physical Society.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada (NRC-CNRC); NRC Institute for Microstructural Sciences
Peer reviewedYes
NPARC number21269556
Export citationExport as RIS
Report a correctionReport a correction
Record identifier4c0b5977-78cf-4b64-9ef0-9580f7669b4d
Record created2013-12-12
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)