InAs/InAsSb strain balanced superlattices for optical detectors: material properties and energy band simulations

Download
  1. Get@NRC: InAs/InAsSb strain balanced superlattices for optical detectors: material properties and energy band simulations (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1063/1.3681328
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleJournal of Applied Physics
ISSN0021-8979
Volume111
Issue034507
AbstractInAsSb/InAs type II strain balanced superlattices lattice matched to GaSb have recently been proposed as an alternative to InAs/(In)GaSb short period superlattices for mid- to long infrared photodetectors. Photoluminescence data at 4 K of OMVPE grown InAsSb (multi-) quantum wells in an InAs matrix on InAs and GaSb substrates is presented for Sb compositions between 4% and 27%. The measured transition energies are simulated with a self-consistent Poisson and Schroedinger equation solver that includes strain and band-offsets. The fitted parameters are then used to predict the type II transition energies of InAsSb/InAs strain balanced superlattice absorber stacks at 77 K for different compositions and periods. The optical matrix element was calculated and compared with InAs/(In)GaSb superlattices. The InAsSb/InAs structures can be designed with higher or equal matrix elements for longer periods. Finally, the initial optical response data of an unoptimized strain balanced InAs0.79Sb0.21/InAs detector with a 40 nm period are shown. Its cutoff wavelength is 0.15 eV (8.5 μm), in good agreement with the predicted type II transition energy of 0.17 eV.
Publication date
LanguageEnglish
Peer reviewedYes
NRC publication
This is a non-NRC publication

"Non-NRC publications" are publications authored by NRC employees prior to their employment by NRC.

NPARC number21269027
Export citationExport as RIS
Report a correctionReport a correction
Record identifier52d99548-8bb4-4ef5-9746-951963418ff7
Record created2013-12-02
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)