The Canada–France ecliptic plane survey—full data release : the orbital structure of the Kuiper Belt

Download
  1. Get@NRC: The Canada–France ecliptic plane survey—full data release : the orbital structure of the Kuiper Belt (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1088/0004-6256/142/4/131
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleThe Astronomical journal
ISSN0004-6256
Volume142
Issue4
Pages131-1131-24; # of pages: 24
SubjectKuiper Belt: general; surveys
AbstractWe report the orbital distribution of the trans-Neptunian objects (TNOs) discovered during the Canada-France Ecliptic Plane Survey (CFEPS), whose discovery phase ran from early 2003 until early 2007. The follow-up observations started just after the first discoveries and extended until late 2009. We obtained characterized observations of 321 deg² of sky to depths in the range g ~ 23.5-24.4 AB mag. We provide a database of 169 TNOs with high-precision dynamical classification and known discovery efficiency. Using this database, we find that the classical belt is a complex region with sub-structures that go beyond the usual splitting of inner (interior to 3:2 mean-motion resonance [MMR]), main (between 3:2 and 2:1 MMR), and outer (exterior to 2:1 MMR). The main classical belt (a = 40-47 AU) needs to be modeled with at least three components: the "hot" component with a wide inclination distribution and two "cold" components (stirred and kernel) with much narrower inclination distributions. The hot component must have a significantly shallower absolute magnitude (Hg ) distribution than the other two components. With 95% confidence, there are 8000⁺¹⁸ºº ₋₁₆₀₀ objects in the main belt with Hg ≤ 8.0, of which 50% are from the hot component, 40% from the stirred component, and 10% from the kernel; the hot component's fraction drops rapidly with increasing Hg . Because of this, the apparent population fractions depend on the depth and ecliptic latitude of a trans-Neptunian survey. The stirred and kernel components are limited to only a portion of the main belt, while we find that the hot component is consistent with a smooth extension throughout the inner, main, and outer regions of the classical belt; in fact, the inner and outer belts are consistent with containing only hot-component objects. The Hg ≤ 8.0 TNO population estimates are 400 for the inner belt and 10,000 for the outer belt to within a factor of two (95% confidence). We show how the CFEPS Survey Simulator can be used to compare a cosmogonic model for the orbital element distribution to the real Kuiper Belt.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada; NRC Herzberg Institute of Astrophysics
Peer reviewedYes
NPARC number19698000
Export citationExport as RIS
Report a correctionReport a correction
Record identifier52fd9c9a-9cf9-4469-8bab-b0ca257bd6ac
Record created2012-03-21
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)