High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea : identification of QTL associated with carotenoid variation in broccoli florets

Download
  1. Get@NRC: High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea : identification of QTL associated with carotenoid variation in broccoli florets (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1007/s00122-014-2360-5
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleTheoretical and Applied Genetics
ISSN0040-5752
Volume127
Issue9
Pages20512064; # of pages: 14
AbstractKey message A high-resolution genetic linkage map ofB. oleraceawas developed from aB. napusSNP array. The work will facilitate genetic and evolutionary studies inBrassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.
Publication date
LanguageEnglish
AffiliationAquatic and Crop Resource Development; National Research Council Canada
Peer reviewedYes
NPARC number21272869
Export citationExport as RIS
Report a correctionReport a correction
Record identifier58109087-04bd-4374-ba30-75c2769fbc0b
Record created2014-12-03
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)
Date modified: