Evaluating the Performance of Close-Range 3D Active Vision Systems for Industrial Design Applications

AuthorSearch for: ; Search for:
TypeArticle
ConferenceSPIE: Electronic Imaging 2005, January 16-20, 2005., Videometrics IX
AbstractIn recent years, active three-dimensional (3D) active vision systems or range cameras for short have come out of research laboratories to find niche markets in application fields as diverse as industrial design, automotive manufacturing, geomatics, space exploration and cultural heritage to name a few. Many publications address different issues link to 3D sensing and processing but currently these technologies pose a number of challenges to many recent users, i.e., "what are they, how good are they and how do they compare?". The need to understand, test and integrate those range cameras with other technologies, e.g. photogrammetry, CAD, etc. is driven by the quest for optimal resolution, accuracy, speed and cost. Before investing, users want to be certain that a given range camera satisfy their operational requirements. The understanding of the basic theory and best practices associated with those cameras are in fact fundamental to fulfilling the requirements listed above in an optimal way. This paper addresses the evaluation of active 3D range cameras as part of a study to better understand and select one or a number of them to fulfill the needs of industrial design applications. In particular, object material and surface features effect, calibration and performance evaluation are discussed. Results are given for six different range cameras for close range applications.
Publication date
LanguageEnglish
AffiliationNRC Institute for Information Technology; National Research Council Canada
Peer reviewedNo
NRC number47405
NPARC number8913475
Export citationExport as RIS
Report a correctionReport a correction
Record identifier5a6442fe-0937-4bdb-bc55-db3f432b97ee
Record created2009-04-22
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)