Genomics of hybrid poplar (Populus trichocarpa x deltoides) interacting with; forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar

DOIResolve DOI: http://doi.org/10.1111/j.1365-294X.2006.02824.x
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Volume15
Issue5
Pages12751297; # of pages: 23
Subjectclassification; Gene Expression; Genes; genome; Genomics; metabolism; methods; pha; Protease; Protease Inhibitors; Protein; Proteins; Tags; Zinc
AbstractAs part of a genomics strategy to characterize inducible defences against insect herbivory in poplar, we developed a comprehensive suite of functional genomics resources including cDNA libraries, expressed sequence tags (ESTs) and a cDNA microarray platform. These resources are designed to complement the existing poplar genome sequence and poplar (Populus spp.) ESTs by focusing on herbivore- and elicitor-treated tissues and incorporating normalization methods to capture rare transcripts. From a set of 15 standard, normalized or full -length cDNA libraries, we generated 139 007 3'- or 5'-end sequenced ESTs, representing more than one-third of the c. 385 000 publicly available Populus ESTs. Clustering and assembly of 107 519 3'-end ESTs resulted in 14 451 contigs and 20 560 singletons, altogether representing 35 011 putative unique transcripts, or potentially more than three-quarters of the predicted c. 45 000 genes in the poplar genome. Using this EST resource, we developed a cDNA microarray containing 15 496 unique genes, which was utilized to monitor gene expression in poplar leaves in response to herbivory by forest tent caterpillars (Malacosoma disstria). After 24 h of feeding, 1191 genes were classified as up-regulated, compared to only 537 down-regulated. Functional classification of this induced gene set revealed genes with roles in plant defence (e.g. endochitinases, Kunitz protease inhibitors), octadecanoid and ethylene signalling (e.g. lipoxygenase, allene oxide synthase, 1 -aminocyclopropane-1-carboxylate oxidase), transport (e.g. ABC proteins, calreticulin), secondary metabolism [e.g. polyphenol oxidase, isoflavone reductase, (-)-germacrene D synthase] and transcriptional regulation [e.g. leucine-rich repeat transmembrane kinase, several transcription factor classes (zinc finger C3H type, AP2/EREBP, WRKY, bHLH)]. This study provides the first genome-scale approach to characterize insect-induced defences in a woody perennial providing a solid platform for functional investigation of plant -insect interactions in poplar
Publication date
AffiliationNRC Biotechnology Research Institute; National Research Council Canada
Peer reviewedNo
NRC number47508
NPARC number3539996
Export citationExport as RIS
Report a correctionReport a correction
Record identifier603f35ed-dcff-4c2c-9483-bbe324903f4e
Record created2009-03-01
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)