Water in star-forming regions with Herschel (WISH): V. the physical conditions in low-mass protostellar outflows revealed by multi-transition water observations

Download
  1. (PDF, 3 MB)
  2. (PDF, 47 KB)
  3. Get@NRC: Water in star-forming regions with Herschel (WISH): V. the physical conditions in low-mass protostellar outflows revealed by multi-transition water observations (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1051/0004-6361/201424267
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleAstronomy & Astrophysics
ISSN0004-6361
1432-0746
Volume572
PagesA21
Subjectstars: formation; ISM: jets and outflows; ISM: molecules; stars: protostars
AbstractContext. Outflows are an important part of the star formation process as both the result of ongoing active accretion and one of the main sources of mechanical feedback on small scales. Water is the ideal tracer of these effects because it is present in high abundance for the conditions expected in various parts of the protostar, particularly the outflow. Aims. We constrain and quantify the physical conditions probed by water in the outflow-jet system for Class 0 and I sources. Methods. We present velocity-resolved Herschel HIFI spectra of multiple water-transitions observed towards 29 nearby Class 0/I protostars as part of the WISH guaranteed time key programme. The lines are decomposed into different Gaussian components, with each component related to one of three parts of the protostellar system; quiescent envelope, cavity shock and spot shocks in the jet and at the base of the outflow. We then use non-LTE radex models to constrain the excitation conditions present in the two outflow-related components. Results. Water emission at the source position is optically thick but effectively thin, with line ratios that do not vary with velocity, in contrast to CO. The physical conditions of the cavity and spot shocks are similar, with post-shock H2 densities of order 105 − 108 cm-3 and H2O column densities of order 1016 − 1018 cm-2. H2O emission originates in compact emitting regions: for the spot shocks these correspond to point sources with radii of order 10−200 AU, while for the cavity shocks these come from a thin layer along the outflow cavity wall with thickness of order 1−30 AU. Conclusions. Water emission at the source position traces two distinct kinematic components in the outflow; J shocks at the base of the outflow or in the jet, and C shocks in a thin layer in the cavity wall. The similarity of the physical conditions is in contrast to off-source determinations which show similar densities but lower column densities and larger filling factors. We propose that this is due to the differences in shock properties and geometry between these positions. Class I sources have similar excitation conditions to Class 0 sources, but generally smaller line-widths and emitting region sizes. We suggest that it is the velocity of the wind driving the outflow, rather than the decrease in envelope density or mass, that is the cause of the decrease in H2O intensity between Class 0 and I sources.
Publication date
PublisherEDP Sciences
LanguageEnglish
AffiliationNRC Herzberg Astronomy and Astrophysics; National Research Council Canada
Peer reviewedYes
NPARC number23001713
Export citationExport as RIS
Report a correctionReport a correction
Record identifier60f8ec8e-ea25-4032-8e86-ee16c685fae3
Record created2017-03-21
Record modified2017-03-30
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)