The effect of rapid thermal N[sub 2]O nitridation on the oxide/Si(100) interface structure

Download
  1. Get@NRC: The effect of rapid thermal N[sub 2]O nitridation on the oxide/Si(100) interface structure (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1063/1.114801
AuthorSearch for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleApplied Physics Letters
Volume67
Issue19
Pages28362838; # of pages: 3
SubjectCHEMICAL BONDS; INTERFACE STRUCTURE; INTERFACES; MOS JUNCTIONS; OXIDATION; OXYNITRIDES; PHOTOELECTRON SPECTROSCOPY; SILICON; SILICON NITRIDES; SILICON OXIDES
AbstractHigh‐resolution x‐ray photoelectron spectroscopy (XPS) was used to study the chemical nature and physical distribution of N in oxynitride films formed by rapid thermal N2O processes (RTPs). High‐resolution synchrotron Si 2p core level photoemission spectroscopy (PES) was used to study the oxide/Si(100) interface suboxide structures with and without the presence of N. XPS N 1s studies indicated that there are two types of N in the RTP oxynitride films. The chemical bond configuration of the first type of N is similar to that N in Si3N4 and is mainly distributed within the first 1 nm from the interface. The second type of N is distributed mainly outside of the first 1 nm region, and the N is likely bonded to two Si and one oxygen atom. PES studies showed that Si formed suboxides with oxygen at the interface for all oxynitride films. It is found that there is no change in the Si+1 structure while there is a dramatic intensity decrease in the Si+2 and Si+3 peaks with the inclusion of N in the oxide. Both the XPS and PES results are explained in terms of a strain reduction as N is incorporated in the film near the interface region, where Si3N4 functions as a buffer layer which reduces the stress caused by the large Si ‘‘lattice’’ mismatch between the bulk Si and the oxide overlayer. About 1/5 of the Si+2 and 1/3 of Si+3 atoms at the SiO2/Si interface has been replaced by the Si3N4 buffer layer at the oxynitride/Si interface.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada; NRC Institute for Microstructural Sciences
Peer reviewedNo
NPARC number12338346
Export citationExport as RIS
Report a correctionReport a correction
Record identifier64f8a605-81d8-428e-ad5b-288612dc6a15
Record created2009-09-10
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)