A blind detection of a large, complex, Sunyaev-Zel'dovich structure

Download
  1. Get@NRC: A blind detection of a large, complex, Sunyaev-Zel'dovich structure (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1111/j.1365-2966.2012.20970.x
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleMonthly Notices of the Royal Astronomical Society
ISSN0035-8711
Volume423
Issue2
Pages14631473; # of pages: 11
AbstractWe present an interesting Sunyaev-Zel'dovich (SZ) detection in the first of the Arcminute Microkelvin Imager (AMI) 'blind', degree-square fields to have been observed down to our target sensitivity of. In follow-up deep pointed observations the SZ effect is detected with a maximum peak decrement greater than eight times the thermal noise. No corresponding emission is visible in the ROSAT all-sky X-ray survey and no cluster is evident in the Palomar all-sky optical survey. Compared with existing SZ images of distant clusters, the extent is large (≈10arcmin) and complex; our analysis favours a model containing two clusters rather than a single cluster. Our Bayesian analysis is currently limited to modelling each cluster with an ellipsoidal or spherical β model, which does not do justice to this decrement. Fitting an ellipsoid to the deeper candidate we find the following. (a) Assuming that the Evrard et al. approximation to Press & Schechter correctly gives the number density of clusters as a function of mass and redshift, then, in the search area, the formal Bayesian probability ratio of the AMI detection of this cluster is 7.9 × 10 4:1; alternatively assuming Jenkins et al. as the true prior, the formal Bayesian probability ratio of detection is 2.1 × 10 5:1. (b) The cluster mass is (c) Abandoning a physical model with number density prior and instead simply modelling the SZ decrement using a phenomenological β model of temperature decrement as a function of angular distance, we find a central SZ temperature decrement of K - this allows for cosmic microwave background primary anisotropies, receiver noise and radio sources. We are unsure if the cluster system we observe is a merging system or two separate clusters. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada (NRC-CNRC); NRC Herzberg Institute of Astrophysics (HIA-IHA)
Peer reviewedYes
NPARC number21269439
Export citationExport as RIS
Report a correctionReport a correction
Record identifier665e04e8-51d1-4f35-b944-4acbe55e99f3
Record created2013-12-12
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)