First results from the herschel gould belt survey in taurus

Download
  1. Get@NRC: First results from the herschel gould belt survey in taurus (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1093/mnras/stt561
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleMonthly Notices of the Royal Astronomical Society
ISSN0035-8711
Volume432
Issue2
Pages14241433; # of pages: 10
AbstractThe whole of the Taurus region (a total area of 52 deg2) has been observed by the Herschel Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS) instruments at wavelengths of 70, 160, 250, 350 and 500 μm as part of the Herschel Gould Belt Survey. In this paper we present the first results from the part of the Taurus re gion that includes the Barnard 18 and L1536 clouds. A new source-finding routine, the Cardiff Source-finding AlgoRithm (CSAR), is introduced, which is loosely based on CLUMPFIND, but that also generates a structure tree, or dendrogram, which can be used to interpret hierarchical clump structure in a complex region. Sources were extracted from the data using the hierarchical version of CSAR and plotted on a mass-size diagram. We found a hierarchy of objects with sizes in the range 0.024-2.7 pc. Previous studies showed that gravitationally bound prestellar cores and unbound starless clumps appeared in different places on the mass-size diagram. However, it was unclear whether this was due to a lack of instrumental dynamic range or whether they were actually two distinct populations. The excellent sensitivity of Herschel shows that our sources fill the gap in the mass-size plane between starless and pre-stellar cores, and gives the first clear supporting observational evidence for the theory that unbound clumps and (gravitationally bound) prestellar cores are all part of the same population, and hence presumably part of the same evolutionary sequence. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada (NRC-CNRC); NRC Herzberg Institute of Astrophysics (HIA-IHA)
Peer reviewedYes
NPARC number21269640
Export citationExport as RIS
Report a correctionReport a correction
Record identifier6e78273d-2c20-4a53-83d5-3627012843d5
Record created2013-12-13
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)