Effect of p-dopant positioning in low-threshold, InGaAs/GaAs/AlGaAs, MQW GRINSCH lasers with GaAs etch-stop layer for multiwavelength applications

DOIResolve DOI: http://doi.org/10.1117/12.237687
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
AbstractEtch-stop layers have proven essential in fabricating devices such as distributed Bragg reflector (DBR) laser arrays which require a high degree of uniformity and precise depth positioning of the gratings. In this report, we investigate the dependence of the threshold current density and external quantum efficiency on the p-dopants' starting position in InGaAs/GaAs/AlGaAs quantum well graded-index separate-confinement heterostructure (GRINSCH) lasers with a GaAs etch-stop layer. The laser structures were grown by molecular-beam epitaxy with As2. With the etch-stop layer approximately 200 nm above the active region's top AlGaAs graded layer, it is found that a significant fraction of injected carriers will recombine in the etch-stop layer if this layer is not sufficiently doped and if the p- dopants are not near enough to the graded layer in the active region. This results in a very high threshold current, a very low efficiency, and the presence of a high-energy peak, corresponding to the GaAs etch-stop layer acting as a quantum well, in the electroluminescence (EL) spectrum. On the other hand, with the dopants positioned correctly, we obtain very low threshold current densities and see no evidence of EL emission from the etch-stop layer. The experimental results are consistent with computer modeling performed with a commercial simulator. Results will also be presented on multiple-wavelength DBR lasers made from these structures.
PlaceSan Jose, CA, USA
AffiliationNational Research Council Canada; NRC Institute for Microstructural Sciences
Peer reviewedNo
NPARC number12330177
Export citationExport as RIS
Report a correctionReport a correction
Record identifier74862b32-7af1-47b4-b35f-4f6555bea855
Record created2009-09-10
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)