Engineering 3D cellularized collagen gels for vascular tissue regeneration

  1. Get@NRC: Engineering 3D cellularized collagen gels for vascular tissue regeneration (Opens in a new window)
DOIResolve DOI:
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
Journal titleJournal of Visualized Experiments
Article numbere52812
AbstractSynthetic materials are known to initiate clinical complications such as inflammation, stenosis, and infections when implanted as vascular substitutes. Collagen has been extensively used for a wide range of biomedical applications and is considered a valid alternative to synthetic materials due to its inherent biocompatibility (i.e., low antigenicity, inflammation, and cytotoxic responses). However, the limited mechanical properties and the related low hand-ability of collagen gels have hampered their use as scaffold materials for vascular tissue engineering. Therefore, the rationale behind this work was first to engineer cellularized collagen gels into a tubular-shaped geometry and second to enhance smooth muscle cells driven reorganization of collagen matrix to obtain tissues stiff enough to be handled. The strategy described here is based on the direct assembling of collagen and smooth muscle cells (construct) in a 3D cylindrical geometry with the use of a molding technique. This process requires a maturation period, during which the constructs are cultured in a bioreactor under static conditions (without applied external dynamic mechanical constraints) for 1 or 2 weeks. The “static bioreactor” provides a monitored and controlled sterile environment (pH, temperature, gas exchange, nutrient supply and waste removal) to the constructs. During culture period, thickness measurements were performed to evaluate the cells-driven remodeling of the collagen matrix, and glucose consumption and lactate production rates were measured to monitor the cells metabolic activity. Finally, mechanical and viscoelastic properties were assessed for the resulting tubular constructs. To this end, specific protocols and a focused know-how (manipulation, gripping, working in hydrated environment, and so on) were developed to characterize the engineered tissues.
Publication date
AffiliationNational Research Council Canada (NRC-CNRC); National Institute for Nanotechnology
Peer reviewedYes
NPARC number21277057
Export citationExport as RIS
Report a correctionReport a correction
Record identifier7c6fbc07-1d9a-4ff7-a14f-06fb5bee51c0
Record created2015-11-10
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)