An infrared spectroscopic study of the thermotropic phase behavior of phosphatidylcholines containing ω-cyclohexyl fatty acyl chains

Download
  1. Get@NRC: An infrared spectroscopic study of the thermotropic phase behavior of phosphatidylcholines containing ω-cyclohexyl fatty acyl chains (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1016/0005-2736(89)90198-3
AuthorSearch for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleBiochimica et Biophysica Acta (BBA) - Biomembranes
ISSN0005-2736
Volume980
Issue1
Pages4249
Subjectα-Cyclohexyl fatty acid; Phosphatidylcholine; Fourier transformation infrared spectroscopy; Lipid; Thermotropic phase behavior
AbstractThe thermotropic phase behavior of an odd- and an even-numbered member of the homologous series of 1,2-di-ω-cyclohexylphosphatidylcholines was studied using Fourier transform infrared spectroscopy. The results obtained indicate that the pronounced discontinuities in the behavior of the odd- and even-numbered homologoues observed by differential scanning calorimetry can be attributed to differences in the organization of their respective gel states. The single phase transition exhibited by the odd-numbered compounds upon heating is shown by infrared spectroscopy to be a direct transition from α condensed, subgel-like phase (Lc phase) to the liquid-crystalline state (Lα phase). In contrast, the multiple transitions exhibited by the even-numbered homologues are shown to be due to the initial conversion of an Lβ-like phase to a more loosely packed gel phase, followed by the acyl chain-melting transition. Moreover, the major changes in the interaction between the acyl chains, and in the organization of the interfacial region of the bilayers formed by the even-numbered homologous, occur at temperatures below that of the chain onset-melting phase transition. The infrared spectroscopic changes observed also suggest that above the chain-melting transition, the odd- and even-numbered homologues form similar liquid-crystalline phases that are more ‘ordered’ than those of normal saturated straight-chain phosphatidylcholines. Most likely this is because the large size and the intrinsic rigidity of the ω-cyclohexyl group reduces the conformational disorder of the liquid-crystalline state by ‘damping’ all acyl chain motions. The formation of a relatively ordered liquid-crystalline state may be the critical property exploited by the thermoacidophylic organisms in which ω-cyclohexyl fatty acids naturally occur.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada
Peer reviewedYes
NPARC number23001182
Export citationExport as RIS
Report a correctionReport a correction
Record identifier7ca82093-4824-4520-ac87-89ce0af62bdf
Record created2017-01-03
Record modified2017-01-03
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)