Quantitative studies on the peroxidation of human low-density lipoprotein initiated by superoxide and by charged and neutral alkylperoxyl radicals

Download
  1. Get@NRC: Quantitative studies on the peroxidation of human low-density lipoprotein initiated by superoxide and by charged and neutral alkylperoxyl radicals (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1021/ja011076d
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleJournal of the American Chemical Society
ISSN0002-7863
Volume123
Issue50
Pages1243912448; # of pages: 10
AbstractRates of peroxidation of human LDL and rates of consumption of the LDL's -tocopherol (TocH) have been measured at 37 C. Peroxidation was initiated by radicals generated in the aerated aqueous phase at known rates by thermal decomposition of appropriate precursors: superoxide (O2-/HOO) from a hyponitrite and alkylperoxyls (ROO, two positively charged, one negatively charged and one neutral) from azo compounds. The efficiencies of escape from the solvent cage of the geminate pair of neutral carbon-centered radicals was found to be 0.1, but it was 0.5 for the three charged radicals, a result attributed to radical/radical Coulombic repulsion within the cage. All four alkylperoxyls initiated and terminated tocopherol-mediated peroxidation (TMP) with about equal efficiency and essentially all of these radicals that were generated were consumed in these two reactions. TMP is a radical chain process, and when initiated by the alkylperoxyls, the rate of LDL peroxidation was faster in the early stages while TocH was present than later, after all of this "antioxidant" had been consumed. In contrast, only about 3-4% of the generated superoxide radicals reacted in any measurable fashion with TocH-containing LDL at pH's from 7.6 to 6.5 and peroxidation was much slower than with a similar rate of generation of alkylperoxyls. After all the TocH had been consumed, LDL peroxidation was negligible at pH 7.6 and 7.4, but at pH 6.8 and 6.5, the peroxidation rates showed a large increase over the rates while the TocH had been present. That is, endogenous TocH behaves as an antioxidant in LDL subjected to attack by the physiologically relevant superoxide radical, whereas TocH behaves as a prooxidant in LDL subjected to attack by the probably far less physiologically important alkylperoxyls. Rates of LDL peroxidation initiated by superoxide increased as the pH was decreased, and the results are consistent with the initiation of peroxidation of fresh LDL occurring via H-atom abstraction from TocH by HOO to form the Toc radical and termination by reaction of O2- with Toc, a process that occurs partly by addition leading to TocH consumption and partly by electron plus proton transfer leading to the regeneration of TocH.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada; NRC Steacie Institute for Molecular Sciences
Peer reviewedYes
Identifier10072378
NPARC number12329209
Export citationExport as RIS
Report a correctionReport a correction
Record identifier88f875e3-8dab-45cb-896c-f4b8ac84c19c
Record created2009-09-10
Record modified2017-03-23
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)