Electrocatalytic activity and stability of carbon nanotubes-supported Pt-on-Au, Pd-on-Au, Pt-on-Pd-on-Au, Pt-on-Pd, and Pd-on-Pt catalysts for methanol oxidation reaction

Download
  1. Get@NRC: Electrocatalytic activity and stability of carbon nanotubes-supported Pt-on-Au, Pd-on-Au, Pt-on-Pd-on-Au, Pt-on-Pd, and Pd-on-Pt catalysts for methanol oxidation reaction (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1016/j.electacta.2014.10.036
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleElectrochimica Acta
ISSN0013-4686
Volume148
Pages17; # of pages: 7
Subjectmethanol oxidation; low-Pt catalysts; stability; activity; Pt-on-Pd
AbstractFor optimizing both the activity and stability of Pt-based catalysts for methanol oxidation reaction (MOR), several carbon nanotubes(CNTs)-supported catalysts such as Pt-on-Au/CNTs, Pd-on-Au/CNTs, Pt-on-Pdon- Au/CNTs, Pt-on-Pd/CNTs, and Pd-on-Pt/CNTs catalysts are synthesized mainly through electrodeposition method. The activity and stability comparisons show that Pt-on-Au/CNTs has a higher MOR activity but a lower stability than Pd-on-Au/CNTs. To utilize the merits of the Pt and Pd components, Pt-on-Pd-on- Au/CNTs and Pt-on-Pd/CNTs catalysts are synthesized. The Pt-on-Pd-on-Au/CNTs and Pt-on-Pd/CNTs catalysts shows higher MOR activity than Pd-on-Au/CNTs and Pd/CNTs catalysts and higher stability than Pt-on-Au/CNTs, suggesting a synergistic interaction between Pt and Pd in catalyzing methanol oxidation reaction. Calculation shows that the total mass activity of Pt-on-Pd/CNTs with quite low Pt amount is on a similar level as that of Pt/CNTs for MOR oxidation, indicating the Pt-on-Pd catalyst could have promising potential as a low-Pt catalyst for MOR in alkaline media.
Publication date
LanguageEnglish
AffiliationEnergy, Mining and Environment; National Research Council Canada
Peer reviewedYes
NPARC number21272881
Export citationExport as RIS
Report a correctionReport a correction
Record identifier8a48ff8a-b0cc-4ea7-8de5-a32e3869f1fc
Record created2014-12-03
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)
Date modified: