Evidence for decay of spin-waves above the pseudogap in underdoped YBa2Cu3O6.35

AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
SubjectCondensed Matter - Strongly Correlated Electrons; Condensed Matter - Superconductivity
AbstractThe magnetic spectrum at high-energies in heavily underdoped YBa$_{2}$Cu$_{3}$O$_{6.35}$ (T$_{c}$=18 K) has been determined throughout the Brillouin zone. At low-energy the scattering forms a cone of spin excitations emanating from the antiferromagnetic (0.5, 0.5) wave vector with an acoustic velocity similar to that of insulating cuprates. At high energy transfers, below the maximum energy of 270 meV at (0.5, 0), we observe zone boundary dispersion much larger and spectral weight loss more extensive than in insulating antiferromagnets. Moreover we report phenomena not found in insulators, an overall lowering of the zone-boundary energies and a large damping of $\sim$ 100 meV of the spin excitations at high-energies. The energy above which the damping occurs coincides approximately with the gap determined from transport measurements. We propose that as the energy is raised the spin excitations encounter an extra channel of decay into particle-hole pairs of a continuum that we associate with the pseudogap.
AffiliationNational Research Council Canada; NRC Canadian Neutron Beam Centre
Peer reviewedNo
NPARC number12328469
Export citationExport as RIS
Report a correctionReport a correction
Record identifier99373c17-23af-44a0-b46d-4c2d609cbc3c
Record created2009-09-10
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)