Multiscale simulation of material removal processes at the nanoscale

  1. Get@NRC: Multiscale simulation of material removal processes at the nanoscale (Opens in a new window)
DOIResolve DOI:
AuthorSearch for: ; Search for: ; Search for:
Journal titleJournal of the Mechanics and Physics of Solids
Pages23842405; # of pages: 22
SubjectDislocation propagation; Finite element; Molecular dynamics; Multiscale; Nanoscratching
AbstractA dynamic multiscale simulation method has been used to study the nanoscale material removal processes for single crystals. The model simultaneously captures the atomistic mechanisms during material removal from the free surface and the long-range mobility of dislocations and their interactions without the computational cost of full atomistic simulations. The method also permits the simulation of system sizes that are approaching experimentally accessibly systems, albeit in 2D. Simulations are performed on single crystal aluminum to study the atomistic details of material removal, chip formation, surface evolution, and generation and propagation of dislocations for a wide range of tool speeds (20-800?m/s) at room temperature. The results from these simulations demonstrate the power of the developed method in capturing both long-range dislocation plasticity and short-range atomistic phenomena during tool advance. In addition, we have investigated the effect of the scratching depth during the material removal process. Fluctuations of scratching tangential force are related to dislocation generation events during the material removal process. A transition from dislocation generation and glides at lower tool speeds to localized amorphization at high tool speeds is found to give rise to an optimal tool speed for low cutting forces.
Publication date
AffiliationNational Research Council Canada; NRC Steacie Institute for Molecular Sciences
Peer reviewedNo
NPARC number12330210
Export citationExport as RIS
Report a correctionReport a correction
Record identifier9ba02892-9e69-4a23-a702-54fd21591875
Record created2009-09-10
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)