Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians

  1. Get@NRC: Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1118/1.4730504
AuthorSearch for: ; Search for: ; Search for:
Journal titleMedical Physics
Pages45374546; # of pages: 10
Subjectarticle; equipment; equipment design; human; instrumentation; interventional radiology; materials; materials testing; methodology; physician; radiation injury; radiation protection; radiation scattering; Equipment Design; Equipment Failure Analysis; Humans; Manufactured Materials; Materials Testing; Physicians; Radiation Injuries; Radiation Protection; Radiography, Interventional; Scattering, Radiation
AbstractPurpose: To measure the attenuation effectiveness and minimize the weight of new non-Pb radiation shielding materials used for radiation protection by interventional radiology (IR) physicians, to compare the accuracy of the different standard measurement geometries of these materials, and to determine x-ray qualities that correspond to the scattered radiation that IR physicians typically encounter. Methods: Radiation attenuation capabilities of non-Pb materials were investigated. Typically, most studies of non-Pb materials have focused on the attenuating properties of metal powders. In this study, layers of materials incorporating non-Pb powdered compounds such as Bi2O 3, Gd2O3, and BaSO4 were measured individually, as bilayers, and as a Bi2O3-loaded hand cream. Attenuation measurements were performed in narrow-beam (fluorescence excluded) and broad beam (fluorescence included) geometries, demonstrating that these different geometries provided significantly different results. The Monte Carlo (MC) program EGSnrc was used to calculate the resulting spectra after attenuation by radiation shielding materials, and scattered x-ray spectra after 90° scattering of eight ASTM Standard primary x-ray beams. Surrogate x-ray qualities that corresponded to these scattered spectra were tabulated. Results: Radiation shielding materials incorporating Bi2O3 were found to provide equivalent or superior attenuation compared with commercial Pb-based and non-Pb materials across the 60-130 kVp energy range. Measurements were made for single layers of the Bi2O3 compound and for bilayers where the ordering was low atomic number (Z) layer closest to x-ray sourcehigh Z (Bi2O3) layer farthest from the x-ray source. Narrow-beam Standard test methods which do not include the contribution from fluorescence overestimated the attenuating capabilities of Pb and non-Pb materials. Measurements of a newly developed, quick-drying, and easily removable Bi2O3-loaded hand cream demonstrated better attenuation capabilities than commercial Bi2O3-loaded gloves. Scattered radiation measurements and MC simulations illustrated that the spectra resulting from 90° scattering of primary x-ray beam qualities can be approximated by surrogate x-ray qualities which are more representative of the radiation actually encountered by IR physicians. A table of surrogate qualities of the eight ASTM F2547-06 Standard qualities was compiled. Conclusions: New non-Pb compound materials, particularly single layers or bilayers incorporating Bi2O3, can reduce the weight of radiation protection materials while providing equivalent or better protection compared to Pb-based materials. Attenuation measurements in geometries that exclude the contribution from fluorescence substantially underestimate the quantity of transmitted radiation. A new Bi2O3-loaded hand cream demonstrated a novel and effective approach for hand protection. Standard testing protocols for radiation protection materials used by IR physicians specify a wider kVp range than is necessary. A more realistic range would acknowledge the lower kVp resulting from scatter and allow IR physicians to confidently utilize lighter-weight materials while still receiving adequate protection. Standards protocols incorporating the adjustments described in this work would maintain the safety of IR personnel and lessen the physical repercussions of long hours wearing unnecessarily heavy radiation protection garments. © 2012 American Association of Physicists in Medicine.
Publication date
AffiliationNational Research Council Canada (NRC-CNRC); NRC Institute for National Measurement Standards (INMS-IENM)
Peer reviewedYes
NPARC number21269498
Export citationExport as RIS
Report a correctionReport a correction
Record identifier9bb21421-a952-4a2f-92a9-deee737ef310
Record created2013-12-12
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)