Label-Free Biosensing Using Silicon Planar Waveguide Technology

DOIResolve DOI:
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
Proceedings titleProceedings of SPIE--the international society for optical engineering
ConferenceSPIE Photonics North: Ottawa,Canada, June 3-7, 2007
AbstractWe exploit the unique properties of the silicon-on-insulator material platform to demonstrate a new series of planar waveguide evanescent field sensors for biological / chemical sensing. These sensors, combined with state-of-the-art surface functionalization chemistries, offer a sensitive, label-free means for the specific detection of biomolecules, without the need for fluorescent tags employed in conventional fluorescence-based biochips. The use of silicon photonic wire waveguide technology allows sensors with extremely small footprint and small radius of curvature to be fabricated, facilitating the development of densely packed sensor arrays for multi-parameter analysis, particularly attractive for drug discovery, pathogen detection, genomics and disease diagnostics. We show that high index contrast silicon photonic wire waveguides not only provide the above stated advantages but also offer increased sensitivity over that of evanescent field sensors constructed on other common waveguide material platforms. This results from the unique properties of the optical modes of silicon photonic wire waveguides, which exhibit very large surface electric field magnitude and strong localization near the waveguide surface. We discuss the design and fabrication of silicon-on-insulator-based Mach-Zehnder interferometer sensors and experimentally demonstrate their performance to detect bulk solution refractive index change and to monitor the specific adsorption of streptavidin to biotinylated waveguides.
Publication date
AffiliationNRC Institute for Microstructural Sciences; National Research Council Canada; NRC Steacie Institute for Molecular Sciences
Peer reviewedNo
NPARC number9373350
Export citationExport as RIS
Report a correctionReport a correction
Record identifiera8e0920d-c65d-4153-a62c-7e60ec071b2b
Record created2009-07-10
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)