A dynamical signature of multiple stellar populations in 47 tucanae

Download
  1. Get@NRC: A dynamical signature of multiple stellar populations in 47 tucanae (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1088/2041-8205/771/1/L15
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleThe Astrophysical Journal Letters
ISSN2041-8205
Volume771
Issue1
Article numberL15
AbstractBased on the width of its main sequence, and an actual observed split when viewed through particular filters, it is widely accepted that 47 Tucanae contains multiple stellar populations. In this contribution, we divide the main sequence of 47 Tuc into four color groups, which presumably represent stars of various chemical compositions. The kinematic properties of each of these groups are explored via proper motions, and a strong signal emerges of differing proper-motion anisotropies with differing main-sequence color; the bluest main-sequence stars exhibit the largest proper-motion anisotropy which becomes undetectable for the reddest stars. In addition, the bluest stars are also the most centrally concentrated. A similar analysis for Small Magellanic Cloud stars, which are located in the background of 47 Tuc on our frames, yields none of the anisotropy exhibited by the 47 Tuc stars. We discuss implications of these results for possible formation scenarios of the various populations. © 2013. The American Astronomical Society. All rights reserved.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada (NRC-CNRC); NRC Herzberg Institute of Astrophysics (HIA-IHA)
Peer reviewedYes
NPARC number21269682
Export citationExport as RIS
Report a correctionReport a correction
Record identifierb3df1257-39de-4ed5-8442-cc10f1ab86ca
Record created2013-12-13
Record modified2016-07-18
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)