Biodegradation of the nitramine explosives hexahydro-1,3-5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions

Download
  1. (PDF, 298 KB)
  2. Get@NRC: Biodegradation of the nitramine explosives hexahydro-1,3-5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1139/W03-112
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleCanadian Journal of Microbiology
Volume50
Issue2
Pages9196; # of pages: 6
Subjectbiodegradation; nitramine explosives; marine sediment; psychrotrophic bacteria
AbstractThe in situ degradation of the two nitramine explosives, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), was evaluated using a mixture of RDX and HMX, incubated anaerobically at 10 °C with marine sediment from a previous military dumping site of unexploded ordnance (UXO) in Halifax Harbor, Nova Scotia, Canada. The RDX concentration (14.7 mg·L–1) in the aqueous phase was reduced by half in 4 days, while reduction of HMX concentration (1.2 mg·L–1) by half required 50 days. Supplementation with the carbon sources glucose, acetate, or citrate did not affect the removal rate of RDX but improved removal of HMX. Optimal mineralization of RDX and HMX was obtained in the presence of glucose. Using universally labeled (UL)-[14C]RDX, we obtained a carbon mass balance distributed as follows: CO2, 48%–58%; water soluble products, 27%–31%; acetonitrile extractable products, 2.0%–3.4%; and products covalently bound to the sediments and biomass, 8.9% (in the presence of glucose). The disappearance of RDX was accompanied by the formation of the mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and formaldehyde (HCHO) that subsequently disappeared. In the case of HMX, mineralization reached only 13%–27% after 115 days of incubation in the presence or absence of the carbon sources. The disappearance of HMX was also accompanied by the formation of the mononitroso derivative. The total population of psychrotrophic anaerobes that grew at 10 °C was 2.6 × 103 colony-forming units·(g sediment dry mass)–1, and some psychrotrophic sediment isolates were capable of degrading RDX under conditions similar to those used for sediments. Based on the distribution of products, we suggest that the sediment microorganisms degrade RDX and HMX via an initial reduction to the corresponding mononitroso derivative, followed by denitration and ring cleavage.
Publication date
AffiliationNational Research Council Canada; NRC Biotechnology Research Institute
Peer reviewedNo
NRC number45972
NPARC number3539727
Export citationExport as RIS
Report a correctionReport a correction
Record identifierbf150efc-7037-4c7d-8e7f-5a09f9889306
Record created2009-03-01
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)