Silicon-on-insulator integrated tunable polarization controller (conference presentation)

DOIResolve DOI:
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
Proceedings titleSilicon Photonics and Photonic Integrated Circuits V
Series titleSPIE Proceedings; no. 9891
ConferenceSPIE Photonics Europe, April 3-7 2016, Brussels, Belgium
Article number989108
AbstractPolarization management is a key functionality in many photonic applications, including optical communications, imaging or quantum information. Developing integrated devices capable of reliably controlling polarization state would result in compact and low cost circuits with improved stability compared with fiber or bulk optics solutions. However, stringent fabrication tolerances make the integration of polarization managing elements highly challenging. The main challenge in polarization controllers, composed by polarization rotators and polarization phase shifters, is to precisely control rotation angle in integrated polarization rotators. Proposed solutions typically require sophisticated fabrication processes or extremely tight fabrication tolerances, seriously hindering their practical application. Here we present a technology independent polarization controller scheme that relies on phase shifters to largely relax fabrication tolerances of polarization rotators. In addition, these phase shifters enable dynamic wavelength tuning. In our scheme, three polarization rotation elements are interconnected with two tunable phase shifters to adjust the polarization extinction ratio, while an output polarization phase shifter is used to select the relative phase. This way we can achieve any desired output state of polarization. We have implemented this scheme in the silicon-on-insulator platform, experimentally demonstrating a record polarization extinction range of 40 dB (± 20 dB) with a 98% coverage of the Poincaré sphere. Furthermore, the device is tunable in the complete C-band. These results constitute, to the best of our knowledge, the highest polarization extinction range achieved in a fully integrated device.
Publication date
PublisherSPIE Digital Library
AffiliationInformation and Communication Technologies; NRC Institute for Microstructural Sciences; National Research Council Canada
Peer reviewedYes
NPARC number23000761
Export citationExport as RIS
Report a correctionReport a correction
Record identifiercb6ab01f-94dc-4551-96c6-ca12a373713e
Record created2016-09-14
Record modified2016-09-14
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)