Shaking alone induces de novo conversion of recombinant prion proteins to β-sheet rich oligomers and fibrils

  1. Get@NRC: Shaking alone induces de novo conversion of recombinant prion proteins to β-sheet rich oligomers and fibrils (Opens in a new window)
DOIResolve DOI:
AuthorSearch for: ; Search for: ; Search for:
Journal titlePLoS ONE
Article numbere98753
Pages112; # of pages: 12
AbstractThe formation of β-sheet rich prion oligomers and fibrils from native prion protein (PrP) is thought to be a key step in the development of prion diseases. Many methods are available to convert recombinant prion protein into β-sheet rich fibrils using various chemical denaturants (urea, SDS, GdnHCl), high temperature, phospholipids, or mildly acidic conditions (pH 4). Many of these methods also require shaking or another form of agitation to complete the conversion process. We have identified that shaking alone causes the conversion of recombinant PrP to β-sheet rich oligomers and fibrils at near physiological pH (pH 5.5 to pH 6.2) and temperature. This conversion does not require any denaturant, detergent, or any other chemical cofactor. Interestingly, this conversion does not occur when the water-air interface is eliminated in the shaken sample. We have analyzed shaking-induced conversion using circular dichroism, resolution enhanced native acidic gel electrophoresis (RENAGE), electron microscopy, Fourier transform infrared spectroscopy, thioflavin T fluorescence and proteinase K resistance. Our results show that shaking causes the formation of β-sheet rich oligomers with a population distribution ranging from octamers to dodecamers and that further shaking causes a transition to β-sheet fibrils. In addition, we show that shaking-induced conversion occurs for a wide range of full-length and truncated constructs of mouse, hamster and cervid prion proteins. We propose that this method of conversion provides a robust, reproducible and easily accessible model for scrapie-like amyloid formation, allowing the generation of milligram quantities of physiologically stable β-sheet rich oligomers and fibrils. These results may also have interesting implications regarding our understanding of prion conversion and propagation both within the brain and via techniques such as protein misfolding cyclic amplification (PMCA) and quaking induced conversion (QuIC).
Publication date
AffiliationNational Research Council Canada (NRC-CNRC); Security and Disruptive Technologies
Peer reviewedYes
NPARC number21273000
Export citationExport as RIS
Report a correctionReport a correction
Record identifierce5cbe6a-9eb7-4dde-909b-08edc1b9873f
Record created2014-12-05
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)