Modeling gravitational collapse of rectangular granular piles in air and water

  1. Get@NRC: Modeling gravitational collapse of rectangular granular piles in air and water (Opens in a new window)
DOIResolve DOI:
AuthorSearch for: ; Search for: ; Search for:
Journal titleMechanics Research Communications
Pages110; # of pages: 10
SubjectCommercial finite element codes; Constitutive behaviors; Fluid solids; Gravitational collapse; Laboratory experiments; Level Set method; Mixture model; Time-dependent evolutions; Channel flow; Drop breakup; Experiments; Forecasting; Granular materials; Gravitational effects; Level measurement; Mixtures; Stars; Piles
AbstractThe present paper is concerned with the two-dimensional collapse of piles of granular materials, a problem analogous to the classical dam break problem in hydraulics. This study is intended to aid in the development of constitutive equations and modeling procedures that can be applied to predict various flows involving high concentration liquid-particle mixtures. We consider the granular collapse as a test problem and attempt to validate our modeling by comparing our predictions with previously published granular collapse experiments. The time-dependent evolution of the collapsing granular piles is calculated by making use of COMSOL, a commercial finite element code that is designed to handle a wide variety of Multiphysics problems. We begin by considering the collapse of a rectangular block of dry granular material and calculate the temporal evolution of the free surface by making use of the Level Set method. Good agreement is found between these predictions and the laboratory experiments of Balmforth and Kerswell (2005). The collapse of granular material submerged in a water is then investigated using a Mixture Model approach. The experiments of Rondon et al. (2011) revealed drastically different collapse periods depending upon whether the initial pile was in a loose or a dense, compacted state. The simple Mixture Model approach gave reasonably good predictions of the Rondon et al. (2011) experiments for the case of initially loose piles that collapsed in about a second, but it was unsuccessful in simulating the collapse of the initially dense piles that were observed by Rondon et al. (2011) to take around 30-40 s. Some simple empirical modifications to the material constitutive behavior were able to roughly predict such long collapse times, but a more comprehensive and detailed investigation of the phenomenon is warranted. © 2013 Elsevier Ltd. All rights reserved.
Publication date
AffiliationNational Research Council Canada (NRC-CNRC)
Peer reviewedYes
NPARC number21270812
Export citationExport as RIS
Report a correctionReport a correction
Record identifierd65ff7ae-376c-46ba-bdbd-130d19915cee
Record created2014-02-17
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)