The crosstalk between Target of Rapamycin (TOR) and Jasmonic Acid (JA) signaling existing in Arabidopsis and cotton

Download
  1. (PDF, 3 MB)
  2. Get@NRC: The crosstalk between Target of Rapamycin (TOR) and Jasmonic Acid (JA) signaling existing in Arabidopsis and cotton (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1038/srep45830
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleScientific Reports
ISSN2045-2322
Volume7
Article number45830
Pages# of pages: 15
AbstractTarget of rapamycin (TOR) acts as an important regulator of cell growth, development and stress responses in most examined diploid eukaryotes. However, little is known about TOR in tetraploid species such as cotton. Here, we show that TORC1-S6K-RPS6, the major signaling components, are conserved and further expanded in cotton genome. Though the cotton seedlings are insensitive to rapamycin, AZD8055, the second-generation inhibitor of TOR, can significantly suppress the growth in cotton. Global transcriptome analysis revealed that genes associated with jasmonic acid (JA) biosynthesis and transduction were significantly altered in AZD8055 treated cotton seedlings, suggesting the potential crosstalk between TOR and JA signaling. Pharmacological and genetic approaches have been employed to get further insights into the molecular mechanism of the crosstalk between TOR and JA. Combination of AZD8055 with methyl jasmonate can synergistically inhibit cotton growth, and additionally JA levels were significantly increased when cotton seedlings were subjected to AZD8055. JA biosynthetic and signaling mutants including jar1, coi1-2 and myc2-2 displayed TOR inhibitor-resistant phenotypes, whereas COI1 overexpression transgenic lines and jaz10 exhibited sensitivity to AZD8055. Consistently, cotton JAZ can partially rescue TOR-suppressed phenotypes in Arabidopsis. These evidences revealed that the crosstalk between TOR and JA pathway operates in cotton and Arabidopsis.
Publication date
PublisherNature Publishing Group
LanguageEnglish
AffiliationAquatic and Crop Resource Development; National Research Council Canada
Peer reviewedYes
NRC numberNRC-ACRD-56329
NPARC number23001870
Export citationExport as RIS
Report a correctionReport a correction
Record identifierdd86523e-6258-4127-a7b7-ac0abd8085db
Record created2017-05-03
Record modified2017-05-03
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)