Membrane anchoring domain of herpes simplex virus glycoprotein gB is sufficient for nuclear envelope localization

Download
  1. Get@NRC: Membrane anchoring domain of herpes simplex virus glycoprotein gB is sufficient for nuclear envelope localization (Opens in a new window)
AuthorSearch for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleJournal of Virology
Volume68
Issue4
Pages22722285; # of pages: 14
AbstractWe have used the glycoprotein gB of herpes simplex virus type 1 (gB-1), which buds from the inner nuclear membrane, as a model protein to study localization of membrane proteins in the nuclear envelope. To determine whether specific domains of gB-1 glycoprotein are involved in localization in the nuclear envelope, we have used deletion mutants of gB-1 protein as well as chimeric proteins constructed by replacing the domains of the cell surface glycoprotein G of vesicular stomatitis virus with the corresponding domains of gB. Mutant and chimeric proteins expressed in COS cells were localized by immunoelectron microscopy. A chimeric protein (gB-G) containing the ectodomain of gB and the transmembrane and cytoplasmic domains of G did not localize in the nuclear envelope. When the ectodomain of G was fused to the transmembrane and cytoplasmic domains of gB, however, the resulting chimeric protein (G-gB) was localized in the nuclear envelope. Substitution of the transmembrane domain of G with the 69 hydrophobic amino acids containing the membrane anchoring domain of gB allowed the hybrid protein (G-tmgB) to be localized in the nuclear envelope, suggesting that residues 721 to 795 of gB can promote retention of proteins in the nuclear envelope. Deletion mutations in the hydrophobic region further showed that a transmembrane segment of 21 hydrophobic amino acids, residues 774 to 795 of gB, was sufficient for localization in the nuclear envelope. Since wild-type gB and the mutant and chimeric proteins that were localized in the nuclear envelope were also retained in the endoplasmic reticulum, the membrane spanning segment of gB could also influence retention in the endoplasmic reticulum.
Publication date
Linkhttp://jvi.asm.org/cgi/content/abstract/68/4/2272
LanguageEnglish
Peer reviewedNo
NRC publication
This is a non-NRC publication

"Non-NRC publications" are publications authored by NRC employees prior to their employment by NRC.

NPARC number12327788
Export citationExport as RIS
Report a correctionReport a correction
Record identifierdf2a8ae7-2f11-4df1-bfc4-6b84cb0c94dc
Record created2009-09-10
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)