Ganglioside partitioning and aggregation in phase-separated monolayers characterized by bodipy GM1 monomer/dimer emission

Download
  1. Get@NRC: Ganglioside partitioning and aggregation in phase-separated monolayers characterized by bodipy GM1 monomer/dimer emission (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1021/la0635348
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleLangmuir
ISSN0743-7463
Volume23
Issue12
Pages67046711; # of pages: 8
AbstractThe distribution of Bodipy GM1 in monolayers of binary and ternary lipid mixtures with coexisting fluid and ordered phases has been examined using a combination of atomic force microscopy and near-field scanning optical microscopy. Monolayers deposited at high (30 mN/m) and low (5 or 10 mN/m) surface pressures were examined and compared to those containing the same concentration of unlabeled ganglioside. Measurements of monomer and dimer Bodipy emission were used to distinguish aggregated from dilute ganglioside levels. For binary DPPC/DOPC monolayers, Bodipy GM1 is distributed throughout both the fluid and ordered phases at low surface pressures, and both labeled and unlabeled gangliosides result in a reduction in the size of ordered DPPC domains at 0.4% and the appearance of small aligned ganglioside-rich domains at 4%. In agreement with earlier studies, GM1 is heterogeneously distributed in small islands in the condensed DPPC domains at high surface pressure. By contrast, Bodipy GM1 causes the disappearance of large DPPC domains at 0.4% and the formation of a new GM1-rich phase at 4%. The addition of both gangliosides leads to a comparable loss of large ordered domains at low surface pressure and the appearance of a new GM1-rich phase at 30 mN/m for ternary lipid mixtures containing cholesterol. The results demonstrate the complexity of GM1 partitioning and illustrate the utility of complementary AFM and high spatial resolution two-color fluorescence experiments for understanding Bodipy GM1 aggregation and distribution.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada; NRC Steacie Institute for Molecular Sciences
Peer reviewedNo
Identifier10367391
NPARC number3538895
Export citationExport as RIS
Report a correctionReport a correction
Record identifiere3c1579d-3177-476e-876d-d718ba450020
Record created2009-03-01
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)