Room temperature cation exchange reaction in nanocrystals for ultrasensitive speciation analysis of silver ions and silver nanoparticles

Download
  1. Get@NRC: Room temperature cation exchange reaction in nanocrystals for ultrasensitive speciation analysis of silver ions and silver nanoparticles (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1021/acs.analchem.5b00511
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleAnalytical Chemistry
ISSN0003-2700
Volume87
Issue13
Pages65846591; # of pages: 8
SubjectCadmium compounds; Chemical analysis; Inductively coupled plasma mass spectrometry; Ion exchange; Mass spectrometers; Nanoparticles; Spectrometers; Atomic fluorescence spectrometers; Cation exchange reactions; Chemical vapor generation; Inductively coupled plasma mass spectrometer; Relative standard deviations; Silver nanoparticles (AgNps); Ultrasensitive detection
AbstractTo evaluate the toxicity of silver nanoparticles (AgNPs) and Ag+ and gain deep insight into the transformation of AgNPs in the environment or organisms, ultrasensitive analytical methods are needed for their speciation analysis. About 40-fold of Cd2+ in CdTe ionic nanocrystals can be "bombarded-and-exploded" (exchanged) in less than 1 min simply by mixing the nanocrystals with Ag+ solution at room temperature, while this cation exchange reaction did not occur when only silver nanoparticles were present. On the basis of this striking difference, an ultrasensitive method was developed for speciation analysis of Ag+ and AgNPs in complex matrices. The released Cd2+ was reduced to its volatile species by sodium tetrahydroborate, which was separated and swept to an inductively coupled plasma mass spectrometer (ICPMS) or an atomic fluorescence spectrometer (AFS) for the indirect but ultrasensitive detection of Ag+. Owing to the remarkable signal amplification via the cation exchange reaction and the advantages of chemical vapor generation for sampling, the limit of detection was 0.0003 μg L-1 for Ag+ by ICPMS, which was improved by 100-fold compared to the conventional method. Relative standard deviations are better than 2.5% at a concentration of 0.5 μg L-1 Ag+ or AgNPs regardless of the detector. The proposed method retains several unique advantages, including ultrahigh sensitivity, speciation analysis, simplicity and being organic reagent-free, and has been successfully utilized for speciation analysis of Ag+ and AgNPs in environmental water samples and paramecium cells.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada (NRC-CNRC); Measurement Science and Standards
Peer reviewedYes
NPARC number21276977
Export citationExport as RIS
Report a correctionReport a correction
Record identifiere4cee497-1a44-4f5b-890a-7e909d29f5c0
Record created2015-11-10
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)