Stabilization of methane hydrate by pressurization with He or N2 Gas

  1. Get@NRC: Stabilization of methane hydrate by pressurization with He or N2 Gas (Opens in a new window)
DOIResolve DOI:
AuthorSearch for: ; Search for: ; Search for:
Journal titleThe Journal Of Physical Chemistry B
Pages1416314168; # of pages: 6
AbstractThe behavior of methane hydrate was investigated after it was pressurized with helium or nitrogen gas in a test system by monitoring the gas compositions. The results obtained indicate that even when the partial pressure of methane gas in such a system is lower than the equilibrium pressure at a certain temperature, the dissociation rate of methane hydrate is greatly depressed by pressurization with helium or nitrogen gas. This phenomenon is only observed when the total pressure of methane and helium (or nitrogen) gas in the system is greater than the equilibrium pressure required to stabilize methane hydrate with just methane gas. The following model has been proposed to explain the observed phenomenon: (1) Gas bubbles develop at the hydrate surface during hydrate dissociation, and there is a pressure balance between the methane gas inside the gas bubbles and the external pressurizing gas (methane and helium or nitrogen), as transmitted through the water film; as a result the methane gas in the gas bubbles stabilizes the hydrate surface covered with bubbles when the total gas pressure is greater than the equilibrium pressure of the methane hydrate at that temperature; this situation persists until the gas in the bubbles becomes sufficiently dilute in methane or until the surface becomes bubble-free. (2) In case of direct contact of methane hydrate with water, the water surrounding the hydrate is supersaturated with methane released upon hydrate dissociation; consequently, methane hydrate is stabilized when the hydrostatic pressure is above the equilibrium pressure of methane hydrate at a certain temperature, again until the dissolved gas at the surface becomes sufficiently dilute in methane. In essence, the phenomenon is due to the presence of a nonequilibrium state where there is a chemical potential gradient from the solid hydrate particles to the bulk solution that exists as long as solid hydrate remains.
Publication date
AffiliationNational Research Council Canada; NRC Steacie Institute for Molecular Sciences
Peer reviewedNo
NPARC number12328226
Export citationExport as RIS
Report a correctionReport a correction
Record identifierea16270b-5a3e-4a17-9ae3-21007da269d5
Record created2009-09-10
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)