Polarimetry with the gemini planet imager: Methods, performance at first light, and the circumstellar ring around HR 4796A

Download
  1. Get@NRC: Polarimetry with the gemini planet imager: Methods, performance at first light, and the circumstellar ring around HR 4796A (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1088/0004-637X/799/2/182
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleThe Astrophysical Journal
ISSN0004-637X
Volume799
Issue2
Article number182
AbstractWe present the first results from the polarimetry mode of the Gemini Planet Imager (GPI), which uses anew integral field polarimetry architecture to provide high contrast linear polarimetry with minimal systematic biases between the orthogonal polarizations. We describe the design, data reduction methods, and performance of polarimetry with GPI. Point-spread function (PSF) subtraction via differential polarimetry suppresses unpolarized starlight by a factor of over 100, and provides sensitivity to circumstellar dust reaching the photon noise limit for these observations. in the case of the circumstellar disk around HR 4796A,GPI's advanced adaptive optics system reveals the disk clearly even prior to PSF subtraction. In polarized light, the disk is seen all the way in to its semi-minor axis for the first time. The disk exhibits surprisingly strong asymmetry in polarized intensity, with the west side ≳9 times brighter than the east side despite the fact that the east side is slightly brighter in total intensity. Based on a synthesis of the total and polarized intensities, we now believe that the west side is closer to us, contrary to most prior interpretations. Forward scattering by relatively large silicate dust particles leads to the strong polarized intensity on thewest side, and the ring must be slightly optically thick in order to explain the lower brightness in total intensity there. These findings suggest that the ring is geometrically narrow and dynamically cold, perhaps shepherded by larger bodies in the same manner as Saturn's Fring.
Publication date
PublisherIOP Publishing
LanguageEnglish
AffiliationNational Science Infrastructure; National Research Council Canada
Peer reviewedYes
NPARC number21275713
Export citationExport as RIS
Report a correctionReport a correction
Record identifiereb077ad5-3a70-49f5-b960-18e268795bf1
Record created2015-07-14
Record modified2016-07-18
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)