Carbon nanotube conductive networks through the double percolation concept in polymer systems

  1. Get@NRC: Carbon nanotube conductive networks through the double percolation concept in polymer systems (Opens in a new window)
DOIResolve DOI:
AuthorSearch for: ; Search for: ; Search for:
Journal titleInternational Polymer Processing
Pages1327; # of pages: 15
SubjectAmorphous matrices; Conductive networks; Cyclic butylene terephthalates; Electrical conductivity; Micro-injection molding; Percolation behavior; Percolation thresholds; Ternary nanocomposites; Crystal orientation; Crystalline materials; Electric conductivity of solids; Multiwalled carbon nanotubes (MWCN); Nanocomposites; Percolation (computer storage); Percolation (fluids); Polypropylenes
AbstractWe investigated the electrical conductivity and percolation behavior of binary and ternary nanocomposites based on multiwalled carbon nanotubes (MWCNs) using polypropylene (PP) and a blend of PP with cyclic butylene terephthalate (CBT). The nanocomposites were prepared by diluting a commercial 20 %wtMWCNT PP masterbatch using optimized melt-mixing conditions. The concentration of carbon nanotubes in the diluted PP samples was as low as 0.5% and as high as 15 % in weight. For the PP/CBT blend CBT concentration was varied up to 40 %wt while the loading of CNT was from 0 to 5 %wt. SEM and TEM techniques were used to examine the quality of the dispersion and the formation of nanotube networks within the polymer matrix. TEM and Raman spectroscopy results showed that for the diluted PP/MWCNT composites the nanotubes are well aligned in samples obtained the microinjection molding process, although the level of alignment is less with crystalline PP than in an amorphous matrix such as polycarbonate (PC). FTIR and XRD results revealed that the orientation of both polymer chains and crystals decreased with the incorporation of nanotubes into PP. The electrical conductivity was also significantly altered by the nanotube alignment in a PP matrix, as was previously observed for PC/MWCNT composites; the conductivity decreased and the percolation threshold rose in highly sheared samples; however, the presence of a crystalline phase improved the conductivity even for high shear conditions through the phenomenon of double percolation threshold. This last concept refers to the requirement that the filler-rich phase be continuous and conductive and not to the existence of two percolation thresholds at two different CNT concentrations. The electrical conductivity of PP/CBT blends was also improved through a double percolation that is the basic requirement for the conductivity of the ternary nanocomposites.
Publication date
PublisherCarl Hanser Verlag
AffiliationNational Research Council Canada; Automotive and Surface Transportation
Peer reviewedYes
NPARC number21272902
Export citationExport as RIS
Report a correctionReport a correction
Record identifiereb71edbe-11c9-4bb7-87aa-5328e9da1167
Record created2014-12-03
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)